AE9/AP9/SPM: Independent Validations and Evaluations

  • V. S. Anashin, G. A. Protopopov, P. A. Shatov, and S. V. Tasenko, “Analysis of geostationary and polar orbit space environment data processed by the Russian Federal Space Agency (Roscosmos) monitoring system,” Radiation Effects Data Workshop (REDW), 2014 IEEE, 1-3, doi:10.1109/REDW.2014.7004553 (2014). [1]
  • W. Atwell and C. Matzkind, “The AE-9 trapped electron model radiation environment and effects on electronics for several shielding configurations, ” 48th International Conference on Environmental Systems, ICES-2018-9 (2018). [2]
  • F. F. Badavi, “Validation of the new trapped environment AE9/AP9/SPM at low Earth orbit,” Adv. Space Res., 54(6):917-928 (2014). [3]
  • F. F. Badavi, S. A. Walker, and L. M. Santos Koos, “Evaluation of the new radiation belt AE9/AP9/SPM model for a cislunar mission,” Acta Astronautica, 102:156-168 (2014). [4]
  • F. F. Badavi, S. A. Walker, and L. M. Santos Koos, “Low Earth orbit assessment of proton anisotropy using AP8 and AP9 trapped proton models,” Life Sciences in Space Research, 5:21-30 (2015). [5]
  • F. F. Badavi, “Effects of updated trapped radiation environment on the ISS dosimetric measurements,” 46th International Conference on Environmental Systems, Vienna, Austria (July 2016). [6]
  • S. Bourdarie, et al., “Benchmarking ionizing space environment models,” ESA/ESTEC (7 March 2017). [7]
  • S. Bourdarie, et al., “How much do solar cycle variations impact long-term effect predictions at LEO?,” IEEE Transactions on Nuclear Science, 67(10):2196-2202, doi:10.1109/TNS.2020.3008251 (2020). [8]
  • Brunet, A. Sicard, C. Papadimitriou, D. Lazaro, and P. Caron, “OMEP-EOR: A MeV proton flux specification model for electric orbit raising missions,” Journal of Space Weather and Climate, 11:55, doi:10.1051/swsc/2021038 (2021). [9]
  • P. Caron, et al., “In-flight measurements of radiation environment observed by Eutelsat 7C (Electric Orbit Raising Satellite),” IEEE Trans. Nucl. Sci., 69(7):1527-1532, doi:10.1109/TNS.2022.3158470 (2022). [10]
  • Y. Chen, M. R. Carver, S. K. Morley, and A. S. Hoover, “Determining ionizing doses in medium Earth orbit using long-term GPS particle measurements,” 2021 IEEE Aerospace Conference (50100), 1-21, doi:10.1109/AERO50100.2021.9438516 (2021). [11]
  • Y. Chen, B. A. Larsen, and M. G. Henderson, “Calculating ionizing doses in geosynchronous orbit from in-situ particle measurements and models,” 2020 IEEE Aerospace Conference, 1-8, doi:10.1109/AERO47225.2020.9172312 (2020). [12]
  • M. de Soria-Santacruz Pich, I., Jun, and R. Evans, “Empirical radiation belt models: Comparison with in-situ data and implications for environment definition,” Space Weather, doi:10.1002/2017SW001612 (2017). [13]
  • E. Delonno, D. C. Marvin, and S. H. Liu, “Assessment of AP9 and solar cell degradation models with flight data,” 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, pp. 3103-3107, doi:10.1109/PVSC.2013.6745116 (2013). [14]
  • D. Heynderickx, P. R. Truscott, H. Evans, and E. J. Daly, “An evaluation of the AP9/AE9 radiation belt models for application in an ESA context,” Radiation Belt Workshop, Santorini, Greece (30 Jun 2013). [15]
  • D. Heynderickx and P. R. Truscott, “Confronting the AP9/AE9 radiation belt models with spacecraft data and other models,” European Space Weather Week 11 (20 Nov 2014). [16]
  • N. V. Kuznetsov, N. I. Nikolaeva, R. A. Nymmik, M. I. Panasyuk, V. M. Uzhegov, and M. V. Yakovlev, “Comparison of the models of charged particle fluxes in space,” 2015 15th European Conference on Radiation and Its Effects on Components and Systems (RADECS), 1-4, doi:10.1109/RADECS.2015.7365594 (2015). [17]
  • X. Li, et al., “Upper limit on the inner radiation belt MeV electron intensity,” J. Geophys. Res., doi:10.1002.2014JA020777 (2015). [18]
  • X. Li, et al., “New insights from long-term measurements of inner belt protons (10x of MeV) by SAMPEX, POES, Van Allen Probes, and simulation results,” J. Geophys. Res., 125:e2020JA028198, doi:10.1029/2020JA028198 (2020). [19]
  • R. Lozinski, et al., “Solar cell degradation due to proton belt enhancements during electric orbit raising to GEO,” Space Weather, 17:1059-1072, doi:10.1029/SW002213 (2019). [20]
  • M. Martucci, et al., “Trapped proton fluxes estimation inside the South Atlantic Anomaly using the NASA AE9/AP9/SPM radiation models along the China Seismo-Electromagnetic Satellite orbit,” Appl. Sci., 11:3465, doi:10.3390/app11083465 (2021). [21]
  • M. Martucci, et al., “New results on protons inside the South Atlantic Anomaly, at energies between 40 and 250 MeV in the period 2018–2020, from the CSES-01 satellite mission,” Phys. Rev. D, 105:062001, doi:10.1103/PhysRevD.105.062001 (2022). [22]
  • W. Miyake, Y. Miyoshi, and A. Matsuoka, “An empirical modeling of spatial distribution of trapped protons from solar cell degradation of the Akebono satellite,” Adv. Space Res., 56(11):2575-2581 (2015). [23]
  • J. Řípa, G. Dilillo, R. Campana, and G. Galgóczi, “A comparison of trapped particle models in low Earth orbit,” Proc. SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 114443P, doi:10.1117/12.2561011 (2020). [24]
  • J. Řípa, G. Dilillo, R. Campana, and G. Galgóczi, “Radiation models for trapped particles,” HERMES-SP Payload Development Meeting, available at INFN (2020). [25]
  • Sandberg, I. A. Daglis, D. Heynderickx, P. Truscott, A. Hands, H. Evans, and P. Nieminen, “Development and validation of the electron slot region radiation environment model,” IEEE Trans. Nucl. Sci., 61(4):1656-1662 (2014). [26]
  • Sandberg, et al., “First results and analysis from ESA Next Generation Radiation Monitor Unit onboard EDRS-C,” IEEE Trans. Nucl. Sci., 69(7):1549-1556, doi:10.1109/TNS.2022.31601018 (2022). [27]
  • Sicard, et al., “GREEN: The new Global Radiation Earth ENvironment model (beta version),” Annales Geophysicae, 36:953-967, doi:10.5194/angeo-36-953-2018 (2018). [28]
  • Sicard, et al., “A new model for the 1-10 MeV proton fluxes (part of ONERA GREEN-V3 model),” 2019 19th European Conference on Radiation and Its Effects on Components and Systems (RADECS), 1-5, doi:10.1109/RADECS47380.2019.9745646 (2019). [29]
  • H. Toda, et al., “Spatial distribution of radiation belt protons deduced from solar cell degradation of the Arase satellite,” Int'l. J. of Astronomy and Astrophysics, 8(4):306-322, doi:10.4236/ijaa.2018.84022 (2018). [30]
  • H. Toda, et al., “Observation of high-energy particles in the inner radiation belt by the HEP instrument of the Arase satellite,” Trans. JSASS Aerospace Tech. Japan, 18(6):398-403, doi:10.2322/tastj.18.398 (2020). [31]
  • L. D. Trichtchenko, L. V. Nikitina, A. P. Trishchenko, and L. Garand, “Highly elliptical orbits for Arctic observations: Assessment of ionizing radiation,” Adv. Space Res., 54(11):2398-2414 (2014). [32]
  • A. Varotsou, J. Guillermin, D. Standarovski, and R. Ecoffet, “Impact of the consideration of AE9/AP9 models on the space radiation environment specification,” ESA/ESTEC (7 March 2017). [33]
  • K. Zhang, et al., “Upper limit of electron fluxes observed in the radiation belts,” Journal of Geophysical Research--Space Physics, 126:e2020JA028511, doi:10.1029/2020JA028511 (2021). [34]
Privacy & Security Notice External Link Disclaimer USA.gov No Fear Act
Current as of 20 October 2023