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FOREWARD 

 

The Air Force Research Laboratory (AFRL) has issued a Challenge Problem to promote 
the development of effective numerical methods for nonlinear tracking applications. This 
Challenge Problem has the acronym TENET, which stands for TEchniques for Nonlinear 
Estimation of Tracks. As part of the TENET Challenge Problem, we have developed a 
simulator and associated documentation in the form of this User’s Guide.  The simulator is 
itself comprised of a target motion generator, a sensor emulator, two baseline solutions, and 
postprocessing software for evaluating metrics.   

Also in conjunction with the TENET Challenge Problem project, AFRL hosted a 
Workshop in Feb 2001 (Reference [1]) and has written conference papers on results with the 
simulator (References [2] and [3]).  All TENET materials are publicly available, some at the 
public web site (https://www.tenet.vdl.afrl.af.mil/) where they are free. 

The TENET Simulator is a suite of MATLAB functions written to provide a nonlinear 
filtering evaluation testbed to the research community. TENET contains two tracker 
implementations, one based on Particle Filter (PF) methods and the other on Alternating 
Direction Implicit (ADI) finite difference methods.  These baseline implementations 
illustrate use of the TENET Simulator in concrete terms.  The TENET Simulator is written to 
easily accommodate new trackers.  New tracking algorithms should be compared to the two 
baseline methods according to the provided metrics.  

The TENET Simulator is written for easy integration and evaluation of new filtering 
methods. This user’s manual describes the existing simulator, and explains what steps are 
required to add a new filter for performance comparison. 

All TENET Simulator code was developed using MATLAB. You must have Version 
5.3 or later of MATLAB to run the TENET Simulator. 

Dr. Keith Kastella and Mr. Chris Kreucher of Veridian Systems developed the ADI and 
Particle Method MATLAB methods as well as an initial version of the TENET test program.  
Mr. John Greenewald of Veridian Engineering wrote the TENET Simulator and contributed 
to this User’s Guide. 

For the Air Force Research Laboratory, Mr. Stanton Musick (AFRL/SNAT) was the 
Project Engineer who guided this Challenge Problem effort.  Mr. Musick also contributed to 
this User’s Guide. 
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1 INTRODUCTION AND SUMMARY 

1.1 Overview of TENET Simulator 
The TENET Simulator is a complete suite of MATLAB functions for studying target 

tracking problems where track-before-detect solution methods are required, as they are at low 
signal-to-noise ratios (SNR). The primary functions of the simulator are to generate target 
truth trajectories and synthetic image data, estimate target tracks, and evaluate tracker 
performance. 

The TENET Simulator consists of six principle modules, each implemented as a 
MATLAB function. A brief statement about the purpose of each module follows:  

• GenMonteCarlo – The executive program, generates an ensemble of Monte 
Carlo simulation runs using GenTrueTrack, GenScenes, RunFilter and 
CalcMetrics. 

• GenTrueTrack – Generates a different randomized target trajectory for each 
Monte Carlo run given initial conditions and process noise strength 

• GenScenes – Generates pixilated sensor images with embedded target pixels at 
specified SNR values 

• RunFilter – Employs the selected tracker (ADI, PF, or user supplied) to process 
the image data and estimate target position and velocity 

• CalcMetrics –Calculate performance metrics 

• PostProcess – Generates plots to assist in analyzing performance 

1.2 Guide to this Report 
This User’s Guide instructs the user on how to install and use the TENET Simulator to 

develop and compare new algorithms in nonlinear filtering. Section 2 details the steps to 
download, install and checkout the software. Section 3 describes the parameters that control 
target motion and sensor imaging. This section also describes a simple user interface to add 
new filters to the simulator. The goal is to provide maximum flexibility to the user and an 
efficient data structure that retains all relevant data. Section 4 describes the TENET 
Simulator software organization. Section 5 details the methods we employed to simulate and 
track targets using low SNR images. Section 6 contains a list of references on this topic. 
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1.3 Software Rights 
All information and data at the TENET website https://www.tenet.vdl.afrl.af.mil/ is 

approved for public release, distribution unlimited.  This means that TENET materials are 
free of copyrights and restrictive licensing agreements, and may be downloaded for free by 
anyone with Internet capabilities. In addition, these materials may be employed as the user 
desires.  We of course hope that these materials will foster new research efforts in nonlinear 
filtering methods. 

In order to maintain a traceable connection to the original TENET project, we request 
that you do not remove the TENET identifier that appears at the top of each MATLAB 
function: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% TENET Simulator, Version 1.0 %
% https://www.tenet.vdl.afrl.af.mil/ %
% %
% AFRL/SNAT %
% Sensors Directorate, AF Research Laboratory %
% Wright-Patterson Air Force Base, Ohio 45433 %
% %
% Software approved for public release; distribution unlimited. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 

Observing this request will help to ensure that subsequent users of TENET programs 
will be able to find the TENET website, which may then prompt them to obtain an update. 
As TENET matures, we expect that additional solution methods and improved versions of the 
software will emerge and be made available at the website. 
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2 INSTALLING THE TENET SIMULATOR 

This section provides instructions for acquiring and installing the TENET Software, and 
then for checking its operation. 

2.1 System Requirements 
TENET software is MATLAB source code that is designed to execute on any computer 

that runs MATLAB Version 5.3 or later. This guide illustrates TENET use assuming a 
personal computer running Windows 2000, but any computer/operating-system that supports 
MATLAB is acceptable.  When installed, TENET source codes occupy less than 100 
kilobytes of permanent storage on your hard drive. 

2.2 Download and Install Procedure 
Follow these steps to download and install the TENET Simulator on your computer.  

1. Create a directory on the hard drive of your local computer to receive the TENET 
software, e.g. c:\TENET.  

2. Log on to the TENET website at https://www.tenet.vdl.afrl.af.mil. Click “yes” to 
proceed when prompted at the Security Alert prompt. 

3. Select Download TENET Simulator M-Files to download a zip file containing all 
TENET Simulator MATLAB files. When prompted where to save the file, browse to 
your TENET directory and click Save.  

2.3 Checking the Software 
This section discusses some simple runs that will help to verify that the downloaded 

software is operating correctly.  Both single- and multi-run tests are discussed.  

2.3.1 Single Run Simulation  

Run a single-run test of the TENET Simulator to see an example simulation and 
evaluation. It will probably take a few minutes for this run to finish.  Begin MATLAB and 
change to your TENET directory (cd c:\TENET).  From the MATLAB command line type: 

MC = GenMonteCarlo(1); 

Figures with images should appear on the screen simulating a sensor with a target under 
track. See Figures 1-3 for an example. Note that Figure 1 shows the particle values and a 1-
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sigma ellipse around the estimate.  Figure 1 and Figure 2 show the velocity pdf for the ADI 
method. The simulation completes after twenty frames (20 sec) of data are processed. 

 

Figure 1 – Particle Method density after time 
and measurement update 

 

Figure 2 - ADI Method density after time and 
measurement update 

 

The data from this run is saved to the structure MC and to an automatically generated 
file. The data may be postprocessed to produce additional useful plots.  The saved file name 
has the following format: MCDate_Description_Count.mat, where Date is in YYYYMMDD 
format, Description is a underscore delimited list of the Filters field (in GenMonteCarlo.m) 
and Count is a counter to distinguish the results of other simulations.  

To postprocess the data type:  

PostProcess(MC); 

Plots showing tracker position and velocity errors should appear.   

2.3.2 Multiple Run Simulation 

In this checkout test we run the TENET Simulator for five Monte Carlo runs of 20 sec 
each to see an example of ensemble processing. Again this will take about 40 minutes to 
complete, depending on processor speed. A wait bar will show progress over the three SNR 
choices. 

Begin MATLAB and move to your TENET directory (cd c:\TENET). Edit file 
GenMonteCarlo.m and change its code to be the same as that shown in Figure 3. Set each of 
the c_flags to zero. In Sensor Image, set snr_db = [16,12,8] to simulate three different SNR 
levels in the image, and make IMAGE_SEED = [10].  Finally in Tracker, choose 
TRACK_SEED = [10]. 
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Figure 3 – File GenMonteCarlo.m after editing 

Then from the MATLAB command line type 

MC = GenMonteCarlo(5); 

If the c_flag.display flag is set to 1 then figures with images should appear on the screen 
simulating a sensor with a target under track. See Figures 1-2 for an example. Note that 
Figure 1 shows the particle values and a 1 sigma ellipse around the estimate. Figures 2 and 3 
show the velocity pdf for the ADI method. The simulation will last twenty frames and then 
be complete. 

To postprocess the data type:  

PostProcess(MC); 

For the multiple run case, the user is prompted to set an error threshold for each filter and 
SNR. The MATLAB command window prompts the user with the following message: 

Set Outlier Threshold: Click at threshold and press ENTER 

The user should place the cursor in the figure until the cross hairs appear as in Figure 5. 
Position the cursor to the desired threshold and left click the mouse button or press ENTER. 
If all of the data is to be used then click ENTER to bypass the data threshold. 
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3 RUN PROCEDURES 

 As a user you will be able to configure and run Monte Carlo simulations of existing 
nonlinear filters, examine results in a variety of ways, and postprocess ensembles of runs for 
evaluation and analysis. This section provides detailed instructions for using the TENET 
Simulator to perform Monte Carlo studies and postprocess their results. 

3.1 Running TENET Simulator 
From the MATLAB command prompt, move to the TENET directory (i.e. type cd 

c:\TENET). Then type the command  

MC=GenMonteCarlo(50); 

to generate 50 Monte Carlo runs. Parameter values, which are hardwired into m-file 
GenMonteCarlo.m, determine the course of the runs.  The resulting data, which comprises a 
50-run ensemble, is stored in a data structure named MC and an automatically generated file. 
The saved file name has the following format: MCDate_Description_Count.mat, where Date 
is in YYYYMMDD format and Description is the first letter in the Filters field (in 
GenMonteCarlo.m) and Count is a counter to distinguish the results of other simulations.  

 For a list of the elements of MC refer to Section 3.4. 

3.2 Setting TENET Simulator Parameters 
 Listed below are the TENET Simulator parameters with their MATLAB variable 

names, in bold type, and range of values, if any, listed within brackets {}. These variables are 
listed in the file GenMonteCarlo.m and may be modified to run specific studies.  

Target motion model 

• Initial conditions, XO {x,vx,y,vy}T 

• Maximum target velocity, max_vel 

• Constant velocity (CV) or constant acceleration (CA) Singer model, truth_model 
{CV, CA} 

• Process noise variance for the target motion, q_truth {>0, 5e-4 for near linear 
motion} 

• Probability of detection, Pd {0 to 1} 

• SNR in dB, snr_db  
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Sensor image parameters 

• Image size in pixels, x dimension: nxpix, y dimension: nypix {64 to 1024} depending 
on run length and available memory 

• Number of scenes in the run, N 

• Update rate, T {positive integer}. 
 
Nonlinear Filtering 

• Filter choice, Filters {‘pf’, ‘adi’} 

• Process noise variance, q {>0, 5e-4 for near linear motion} performance usually 
improves with q = 10*q_truth 

 

 

3.3 The Interface for New Filters 
The TENET Simulator is designed to accommodate new filtering methods in two “easy” 

Steps. Step 1 is to add new user track estimation code; this is by far the more demanding 
Step.  The PF and ADI implementations are examples of appropriate code. Step 2 is to add 
the user filter name to the Filters list in the nonlinear filtering parameter initialization 
segment of file GenMonteCarlo.m. TENET will accommodate any number of trackers, as 
long as there are separate “init_” and “update_” files for each. Module GenMonteCarlo will 
run each one named in the Filters list. The remainder of this section describes the interface 
for any new track estimation code.  

The first task in Step 1 is merely to choose the name of the new filter.  Names 
previously used were pf and adi. Henceforth this name will be user for convenience. 

 The new user-supplied filter must perform two functions in two separate m-files. The 
first m-file initializes the new filter and must be named ‘init_user.m’. The second m-file 
contains a function to perform time and measurement updating and is named 
‘update_user.m’. Each function must use the variables provided in the interface. 

3.3.1 Init Function 

The call from GenMonteCarlo to this function assumes this form: 

[data] = init_user (X0, q, T, NumFrames); 

The required inputs and outputs to init_user are listed next. 
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Inputs: 

• X0 is the initial state estimate 

• q is the modeled process noise 

• T is the time between measurement updates 

• NumFrames is the number of observations for the entire simulation. This is provided 
to save overall processing time by initializing parameters since it is costly in time 
resources to sequentially update the data structures in MATLAB. 

 

Outputs: 

All outputs are delivered in “data” which is a standard MATLAB data structure with the 
following required fields: 

• data.desc is a string of characters to describe the nonlinear filtering method on 
post processing plots. 

• data.Xhat is the state estimate [x;xdot;y;ydot], size is 4xNumFrames. Initialize 
using: data.Xhat = zeros(4,NumFrames); 

• data.index indexes through the observations. Initialize to 0. 

• data.q is the provided model of the process noise variance. 

3.3.2 Update Function 

The call from RunFilter to the “update” function assumes this form: 

[data]  = update_user(data, FOV, FOV_offset, T, XGT); 

The required inputs and outputs to update_user are listed next. 

Inputs: 

• data is the nonlinear filter data structure 

• FOV is the field of view output of the imaging sensor. FOV size is determined by the 
imaging parameter in GenMonteCarlo.m. 

• FOV_offset is the offset to control the sensor to move the image to keep the target in 
the FOV. 

• T is the time between measurement updates 

• XGT is the ground truth state estimate [x;xdot;y;ydot], size is 4xNumFrames. 
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Outputs: 

• data is a MATLAB data structure with the following required fields: 

• data.desc is a string of characters to describe the nonlinear filtering method on post 
processing plots. 

• data.Xhat is the state estimate [x;xdot;y;ydot], size is 4xNumFrames. Initialize using: 
Data.Xhat = zeros(4,NumFrames); 

• data.Phat is the covariance estimate. 

• data.index indexes through the observations. Initialize to 0. 

• data.q is the provided model of the process noise variance. 

Optional data structure fields: 

• Pos_Density is the estimate of the position density after update. Pos_Density is a 
three dimensional array where the size is a fixed density window size in each x and y 
by NumFrames.  

• Pos_DensityOffset is the offset in x/y of the position density window, size is 
NumFrames by 2. 

• Vel_Density is the estimate of the velocity density after update. Vel_Density is a 
three dimensional array where the size is a fixed velocity density window size in each 
x and y by NumFrames.  

• Vel_DensityOffset is the offset in x/y of the velocity density window, size is 
NumFrames by 2. 

 
Users should review init_pf.m, init_adi.m, update_pf.m and update_adi.m for examples 

of initialization and update functions. 

3.4 Data Structure 
Data structures are relaxed except for a few required fields to aid in the automation. The 

user is free to create any other fields deemed necessary. However, without user modification 
the intermediate data will not be saved. 

The output data structure (MC) from the GenMonteCarlo function is of the following 
architecture: 

MC.Results is an array (size = #SNR cases by #Monte Carlo runs) of each filter under 
test 
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3.5 Example Commands 
Plot the true position in XY coordinates for the first SNR and the first simulation: 

Plot(MC.Results(1,1).Xtrue(1,:),MC.Results(1,1).Xtrue(3,:)) 

Plot the position estimate from the ADI filter in XY coordinates for the first SNR and 
the first simulation: 

Plot(MC.Results(1,1).adi.Xhat(1,:),MC.Results(1,1).adi.Xhat(3,:)) 

Plot the true velocity in XY coordinates for the first SNR and the first simulation: 

Plot(MC.Results(1,1).Xtrue(2,:),MC.Results(1,1).Xtrue(4,:)) 

Plot the velocity in XY for the ADI filter 

Plot(MC.Results(1,1).adi.Xhat(2,:),MC.Results(1,1).adi.Xhat(4,:)) 
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4 TENET SOFTWARE ORGANIZATION 

4.1 Software Flowchart 
 

 

 

 

 
 

 

 

 

 

 
 

 

4.2 MATLAB m-File Description 
GenMonteCarlo: The function GenMonteCarlo initiates all calls to sub functions based 

on the user input parameters. The parameter list determines what scenarios will be run and in 
what order for compilation into tracker performance results. 

GenMonteCarlo RunFilter GenMetrics PostProcess 

Tracker     
Perf. 
Results 

Target 
Trajectory 
Data 

Sensor    
Image 
Data 

init_name* update_name*

* name is identified in parameter 
Filters, e.g. pf and adi. 
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5 METHOD 

5.1 Bayesian Nonlinear Filtering 
To track a target from a sequence of measurements ky  made at discrete times kt , let the 

target dynamics be described by an Ito stochastic differential equation [3] for the time-
dependent target state tx   

 ttdtdttd tttt ≥+= ,),(),( βxGxfx      (1) 

where tx and f are n -vectors, G is an rn × matrix function, and },{ 0ttt ≥β  is an r -vector 

Brownian motion process with dttddE tt )(}{ T Q=ββ .  

The observations up to time τ  are denoted 

}:{ τ≤=τ ll tY y  (2)

Between observations the evolution of the conditional density is determined by the 
target dynamics as characterized by the Ito equation.  The time evolution of the joint density 
between measurements is the solution to the Fokker-Planck equation (FPE) 

1),()|( +<≤= kkktt tttpLY
t
p x

∂
∂ , (3)

where  

( ) ( )( )
∑∑ +−≡

==

n

ji ji

ijn

i i

i pppL
1,

T2

1 2
1)(

xx
GQG

x
f

∂∂
∂

∂
∂

 (4)

with initial condition given by )|( ktkt Yp x .   

Then given a new observation ky , the updated conditional density )|( ktkt Yp x  is obtained 
from the predicted density )|( 1−ktkt Yp x  using Bayes’ formula:  

∫ ′′′
=

−

−

ktktktktk

ktktktk
ktkt dYpp

Ypp
Yp

xxxy
xxy

x
)|()|(

)|()|(
)|(

1

1  (5) 

The minimum mean square error target state estimate tx̂  is 
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∫= ttttt dYp xxxx )|(ˆ  (6)

In this version of the challenge problem, we focus on the effect of measurement 
nonlinearity due to low SNR, and use a linear motion model, the so-called “nearly constant 
velocity” model with ( )T,,, yyxx=x , ( )T0,,0,)( yx=xf , and )(tG  and )(tQ  given by 



















=

10
00
01
00

G  and 





=

q
q
0

0
Q . (7)

The resulting FPE is  

2

2

2

2

22 y
pq

x
pq

y
py

x
px

t
p

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂ ++−−=  (8)

5.2 Sizing Signal-to-Noise Ratio 
While signal-to-noise ratio (SNR) is often used to gauge likely performance for filter 

processes, it is only rigorously related to performance in the case of Gaussian signals.  The 
Kullback-Leibler discrimination, a more general quantity that is related to detection and 
estimation performance, is defined by  

( )∫≡ dyyqyqyqqqL )(/)(ln)();( 10010  (9) 

Its symmetrized relative, the divergence, is defined by 

 );();();( 011010 qqLqqLqqL +≡      (10) 

The divergence is a convenient measure of effective SNR. For a Gaussian signal given by  

( )( )λλ
πλ

2/exp
2
1)( 2

1 −−= yyp  (11) 

and  

( )λ
πλ

2/exp
2
1)( 2

0 yyp −=  (12) 

it is straightforward to find that  
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λ=);( 10 ppLGauss
 (13) 

For Rayleigh distributed measurements with 

 ( ))1(2/exp
1

)( 2
1 λ

λ
+−

+
= yyyp   

 ( )2/exp)( 2
0 yyyp −=   

we have this expression for the divergence: 

λ
λ
+

=
1

);(
2

10 ppLRay . (14) 

Note that in the large λ  limit, the Rayleigh and Gaussian divergences are the same, while 
they differ significantly for small values of λ .   

5.3 Target Dynamics 
We simulate target dynamics using an Ito stochastic differential equation [3] for the 

time-dependent target state tx   

 ttdtdttd tttt ≥+= ,),(),( βxGxfx  (15) 

where tx and f are n -vectors, G is an rn × matrix function, and },{ 0ttt ≥β  is an r -vector 

Brownian motion process with dttddE tt )(}{ T Q=ββ . We use a linear motion model, the so-
called “constant velocity” model with ( )T,,, yyxx=x , ( )T0,,0,)( yx=xf ,  









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

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

=
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00
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G  and 





=

q
q
0

0
Q . (16) 

5.4 Sensor Model 
An example of how to incorporate the likelihood function into NLF is presented by 

pixelized data such as point-target image-tracking applications.  Envelope-detected radar data 
takes a similar form.  In this case an image contains M  pixels labeled Mi ,,1= .  The 
measurement consists of the pixel output vector T

,1, ],,[ Mkkk yy=y where the iky , can be 
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positive, real or complex, depending on the details of the sensor and signal processing. For 
point targets, pixel outputs are conditionally independent and  

)|()|(
1

, k
M

i
ikkk ypp xxy ∏=

=
 (17) 

When there is no target in a pixel, its output statistics are determined by the background 
rate )( ,0 ikyp .  Depending on the nature of the imager, this may be modeled by Rayleigh, 
Poisson, or more complicated distributions. Further, it may vary with pixel index and time, 
depending on the clutter statistics. When the target projects into a pixel i , its output statistics 
will be given by )( ,1 ikyp , which, again, may be pixel and time dependent and will depend on 
the detailed nature of the sensor and target.   

Using Bayes’ formula directly to update the density is cumbersome because it involves 
M  factors in the product for each discretized value of the target state vector ktx .  This can be 
simplified by defining the target-space to pixel-space projection: 





=
otherwise0

 pixel   toprojects 1
)(

i
hi

x
x  (18) 

This projection is a binary mapping from the target state to the pixel space.  Note that 
this is a highly nonlinear function of the target state.  For Doppler-sensitive sensors such as 
radar or ladar, this projection will depend on the target velocity as well as its location.  Using 
the target-space to pixel-space projection,  

( )( )
)(/)(

)()()()()|(

,0,1

1
,0,1,0

kikkik

M

i
ikikkiikkk

ypyp

ypyphypp

xx

xxy

κ=

∏ −+=
=  (19) 

where xi  is the target-containing pixel (i.e. 1)( =kkih xx ) and  

∏=
=

M

i
ikyp

1
,0 )(κ  (20) 

is a constant that can be dropped in the Bayes’ formula update.  With this expression only the 
measurement likelihood ratio 

)(/)()( ,0,1, kikkikkik ypypyl xxx =  (21) 

needs to be evaluated for each discretized  value of the target state vector kx , a significant 
saving in computation.   
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To illustrate, for a Rayleigh target with SNR parameter λ , the probability distribution 
for intensity 

kiy x  of the target-containing pixel is  




 +−
+

= )1(2/exp
1

)( 2
1 λ

λ ki
ki

ki y
y

yp x
x

x  (22) 

 

The distribution for the background pixels is given by the same expression with 0=λ .  A 
little algebra shows that up to an irrelevant constant that can be dropped, the likelihood is  
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5.5 Algorithm for Particle Filter Method  
Particle methods are a collection of Monte Carlo techniques in which the probability 

density is represented by a collection of N  independent and identically distributed random 
samples, ( ){ }Nii

k ,,1; =x . The samples ( )i
kx , referred to as particles, are distributed according to 

( )kk
i

k Yp |~)( xx .   Then the conditional likelihood is approximated by  

( ) ( )∑ −≈
=

N

i

i
kkkk N

Yp
1

)(1| xxx δ  (24) 

where ( )xδ  is the Dirac δ -function in target state space.   

To implement a particle filter using the technique called Sampling, Importance, 
Resampling (SIR), we mechanize prediction and measurement update using the 
approximating density above.  For prediction at time k , we propagate each particle ( )i

k 1−x  by 
producing a single draw from ( )( )i

kkp xx |1+ .  The predicted particles are denoted ( )i
kx  and the 

predicted density is approximated by  

( ) ( )∑ −≈
=

−
N

i

i
kkkk N

Yp
1

)(
1

1| xxx δ  (25) 

 

To perform measurement update, we can approximate (up to a normalization constant 
κ ) 
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( ) ( ) ( )
( ) ( )∑ −=

∑ −≈

=

=
N

i

i
kk

i
kk

N

i

i
kkkkkk

yp

ypYp

1

)()(

1

)(

|

||

xxx

xxxx

δκ

δκ

 (26) 

 

where each particle is weighted by its measurement likelihood ( ))(| i
kkyp x .  In the so-

called Sequential Importance Sampling (SIS), this process is simply iterated.  The weight for 

particle i  after K  steps is ∏∝
=

−K

k

i
kk

i
K ypw

1

)( )|( x .    SIS is not a very effective algorithm since 

the particle trajectories are not influenced by the measurements at all.  As a result, they 
quickly diffuse away from the region of high likelihood and very poor estimation 
performance results.   

This problem with SIS is corrected in the Sampling Importance Resampling (SIR) 
algorithm.  Here a new set of particles is generated from the predicted set by resampling with 
likelihood ( ))(| i

kkyp x .  Thus particles with high likelihood are sampled many times while 
particles with low likelihood are unlikely to appear in the resampled set.  With this, we have 
the SIR algorithm: 

Particle Filter Algorithm (SIR)

1. Initialization, 0=k : 

 ♦For Ni ,,1=  sample ( )0
)(

0 ~ xx pi  and set 1=k . 

2. Prediction step: 

 ♦For Ni ,,1=  sample ( ))(
1

)( |~~ i
kk

i
k p −xxx  . 

3. Resampling step: 

 ♦Compute importance weights, )~|( )()( i
kk

i
k ypw x=  . 

 ♦Normalize the weights according to 

     )(max max i
ki

k ww = ; max)()( / k
i

k
i

k www ←  . 

 ♦Generate N  resampled particles ( ){ }Nii
t ,,1; =x  

       with   ( ) ( )( ) )(1~Pr j
k

j
k

i
k w

N
== xx  . 

 ♦Set 1+← kk  and go to Step 2. 
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5.6 Algorithm for ADI Method  
For the finite difference filter, we used the Alternating Direction Implicit (ADI) scheme 

to solve the Fokker-Planck Equation.  Space and time are discretized on a uniform grid with 
time resolution t∆  and spatial resolution T),,,( yyxx ∆∆∆∆=∆x .  In this subsection p  denotes a 
continuum solution to the FPE while g  denotes a function defined on the grid that 
approximates p .   Defining the sub-operators 

x
xA

∂
∂−=1  (27) 

2

2

2 2 x
qA

∂
∂=  (28) 

y
yA

∂
∂−=3  (29) 

2

2

4 2 y
qA

∂

∂=  (30) 

the FPE can be written as  

pA
t
p

i
i∑=

∂
∂  (31) 

Discretizing in time but not in space, for now, we abbreviate ),( k
k tpp x= .  The implicit 

Euler scheme [9] for the FPE is obtained by using a Taylor series in time for ),( ttp k ∆+x , 
leading to  

( )tOpA
t

pp k

i
i

kk
∆+∑=

∆
− +

+
1

1
 (32) 

Rearranging terms leads to  

( )21 )(1 tOppAt kk

i
i ∆+=





∑∆− +  (33) 

In principle, this expression can be solved for 1+kp  by inverting the operator ∑∆− i iAt1 , 
but direct inversion is computationally expensive.  An expression that is equivalent to 

( )3)( tO ∆  but much simpler to invert is obtained by using the operator identity 

( ) ∑∆+∑∆−≅∏ ∆−
< ji

ji
i

i
i

i AAtAttA 211  (34) 

It can be shown that, if x∆iA  is an ( )x∆O  discretization of iA , then  
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( ) kk

i
i pptA ≅∏ ∆− +
∆

11 x  (35) 

and the grid function g  defined by  

( ) kk

i
i ggtA =∏ ∆− +
∆

11 x  (36) 

 

approximates p  up to the error terms proportional to   ( ) ( )tOO ∆+∆x  (higher order 
approximations can be constructed, at some additional computational cost). 

To propagate the density, we solve Eq. (36) for 1+kg  using  

( ) 4,,1,1 4/)1(14/ =∆−= −+−
∆

+ igtAg Aik
i

ik
x  (37) 

The essential point to note is that each factor ( )x∆∆− itA1  in Eq. (36) is inverted separately, 
simplifying the calculation.  To discretize iA , abbreviate 1),,,,,( ±=∆±∆ xqyyxxxtkq ω  with 
similar definitions for 11 ,, ±± ωqqx .  Using upwind differencing for the first order spatial 
derivatives, we have 





<−
>−

∆
−=

+

−
∆ 0,

0,

1

1
1 xqq

xqq
x

xgA
xx

xx
x  (38) 

( )1122 2
2

−+∆ +−
∆

= xx qqq
x

qqA x  (39) 

with similar expressions for x∆3A  and x∆4A .  With this discretization, each operator 
( )x∆∆− itA1  is tridiagonal and can be inverted using Thomas’s algorithm [9].   

To completely specify the FPE solution, it must be restricted to a finite domain leading 
to an initial-boundary value problem.  The finite grid domain consists of the points 

T
0000 ))(,)(,)(,)(( yllykkxjjxii ∆+∆+∆+∆+ , xNi ,,0= , xNj ,,0= , yNk ,,0= , yNl ,,0= ,  

where 00 ,, mi  are offsets used to translate the origin.  The total number of grid nodes is 
)1)(1)(1)(1( ++++ yyxx NNNN  while the number of unknowns is 

)1)(1)(1)(1( −−−−= yyxx NNNNN .  Boundary conditions must be specified on this hyper-cube 
to determine the solution to the FPE uniquely.  We assume that the target signal-to-noise 
ratio is sufficiently high that the target has been localized.   Then the density will be 
concentrated in some small region and decay exponentially far from this region.  We 
assumed that the grid was large enough that the density was small on its boundary.  With this 
motivation we used a homogenous Dirichlet condition with the solution held at 0 on the 
boundary.   
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To reduce the size of the grid required to represent the target joint density and thereby 
save computations, the grid was translated after each measurement to approximately maintain 
the target’s location near its center.  After each measurement update the target position 
estimate )ˆ,ˆ( tt yx  was evaluated and the grid was shifted to center of the grid near this 
position.  This was achieved by placing the lower left corner of the spatial grid at ),( 00 ji  
where  

[ ]2//ˆ0 xNxxi −∆=  (40) 

[ ]2//ˆ0 yNyyj −∆=  (41) 

and [ ]x  denotes rounding to the nearest integer.  This always translated the grid by an integral 
multiple of ( )yx ∆∆ , .  Grid nodes outside the intersection of the original and translated grids 
were set to 0.  

5.7 Metrics 
The RMS values of position and velocity error were chosen as metrics to illustrate 

performance in this paper. Error is defined as the difference between estimate and truth, 
ttt xxe −= ˆ , where the estimate tx̂  is computed as the mean of the estimated density )|( ttp Yx . 

Although RMS accuracy alone does not provide a thorough characterization of performance 
in a general tracking problem, it would seem to be appropriate in this special case where 
there is just one target (the usual multi-track metrics degenerate or disappear) and track state 
initialization is nearly perfect (e.g. convergence times would be artificially small).  

As noted previously, it is expensive and unnecessary to compute the joint density over 
the entire range of motion. Instead, a computational gate is established on which to produce a 
solution, this gate being a small fixed-size subset of the motion region. The gate must be 
translated using estimates of target motion as inputs to a translation control algorithm. If the 
filter estimate drifts so far from the truth that the target exits the gate, lost lock occurs. With 
target observations lost, the filter diverges quickly and seldom recovers. The gate translation 
control problem was challenging anytime filter estimates were inaccurate, e.g. at startup or at 
the lowest SNRs. Lost lock events were logged and their frequency computed. 

5.8 Experiments 
The estimation problem is to track a single dim target moving in a 2D space using 

intensity images of the track area for measurements. True target motion is generated using a 
nearly constant velocity (NCV) model of target dynamics, a model based on the assumption 
that acceleration is a white noise process, )()( twta = . The white noise in the NCV model 
imposes randomness in the motion so that a different true trajectory is produced on every 
Monte Carlo run. Target motion is represented in each filter by the same NCV model. This 
decision to match filter to truth avoids most mis-modeling issues. For the results that follow, 
even the noise strength of the filter was matched to the truth.  
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The simulated sensor images the entire target motion region to produce a scene of 256 x 
256 pixels. The intensity in each pixel is governed by a Rayleigh distribution with noise 
power one, Eq. (22). In the pixel holding the target, the intensity is adjusted for the SNR of 
the study, Eq. (21). Identical simulated sensor images are input to each filter as 
measurements, but only the portion of the scene in the instantaneous gate contributes to the 
joint density estimate. 

The initial state of each filter is chosen to approximately match the truth. The initial 
density of each filter is uniform in each of the four dimensions ),,,( yyxx , and extends over 
the space in the initial gate. For the results that follow, the gate was fixed at 10x10 pixels in 

),( yx  space. 

In the case of a lost lock event, accuracy degrades precipitously and the run is 
effectively ruined. When this occurs, data from that run is removed from the study ensemble, 
and a new run is made to replace the spoiled one. 

Experimental results are based on studies of 50 Monte Carlo runs each. Studies were 
conducted for ADI and PF separately, at 2 dB intervals in the range 4-20 dB effective SNR, 
Eq. (23). Altogether, 18 studies (9 each for PF and ADI) contributed to the results reported 
next. 
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