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Abstract - This paper presents the formulation of a low SNR 
target tracking challenge problem that we have designed to 
explore the numerical and estimation performance trades of 
nonlinear filtering methods.  We have implemented a parti-
cle filter (PF) and alternating direction implicit-based 
(ADI) finite difference method filter. Our initial result from 
comparing these methods in terms of their RMS position 
error is that PF betters ADI by about 60% at 2.5dB SNR, 
the point of maximum error reduction.  More significantly, 
PF also appears to be much more robust against track loss 
at these low SNR levels.  This robustness derives from the 
inherent adaptivity of the particle method. 

Keywords - tracking, filtering, estimation, finite difference 
method, particle method. 

1 Introduction 
Development of effective numerical methods for nonlinear 
tracking applications is a significant hurdle for data fusion 
systems.  One of the most stressing applications of nonlinear 
filtering (NLF) is pre-detection tracking: tracking algorithms 
that use pixelized, unthresholded data as the filter input.  
This avoids the information-losing step of thresholding the 
data to produce partial target state measurements such as 
range, range-rate and bearing.  If these nonlinear problems 
can be solved with sufficient numerical accuracy, it will 
allow targets to be tracked at lower signal-to-clutter+noise 
ratios (SCNR), enabling improved performance for detect-
ing and tracking targets under foliage, surface vessels in the 
littoral zone and cruise missiles.   

While it is well known that the Kalman filter is the Bayes’ 
optimal estimator for the standard linear Gaussian problem, 
much less is known theoretically about predetection tracking 
– even when the target motion itself is linear. However, 
there has been much recent progress in the area of nonlinear 
filtering that is applicable to problems of this sort.  There 
are now a number of viable numerical methods to solve 
nonlinear filtering problems.  Candidates include (but are 
not limited to):  

1) particle methods [1, 2, 7],  
2) finite difference methods [4,5],  
3) spectral methods [6],  
4) probabilistic data association methods, and  
5) multiple hypothesis, multiple frame methods.   

While not fully mature, these methods have been developed 
to the point where they can be considered for transition to 
deployable systems.  Their relative performance for realistic 
problems needs to be better understood.  The actual gain in 
estimation performance obtained by processing predetected 
data has not been characterized.  How this performance gain 
varies with SCNR and the impact of target maneuvers re-
mains to be investigated.  The nature of the numerical error 
incurred by each method and its impact on various parts of 
the target envelope remains to be systematically studied.   

To promote the development of engineering expertise in this 
area, the Air Force Research Lab (AFRL) is sponsoring a 
study project to evaluate the effectiveness and relative nu-
merical performance of nonlinear filtering algorithms. To 
support this effort, which is being called a challenge prob-
lem, AFRL is developing a set of synthetic, ground-truthed 
data sets and associated metrics for testing in the research 
community.  We propose two approaches to generating the 
target motion.  As a baseline, we propose to generate ran-
dom target motions using a simple 2nd order model 

),,,( yyxx .  This has some advantages from an analysis 
point of view in that it is simple and enables focused study 
on numerical NLF issues.  In a subsequent approach, we 
propose scenarios involving multiple targets maneuvering at 
unspecified times with variable normal accelerations.  

The primary measures of performance (MOPs) are target 
RMS error as a function of SNR.  As part of this effort, a 
separate MOPs module has been developed.  This code is 
available in the form of commented MATLAB code at 
https://www.tenet.vdl.afrl.af.mil.  

The remainder of this paper is organized as follows.  Section 
2 briefly summarizes the basics of nonlinear filtering in a 
Bayesian formulation and defines a simple motion model for 
use here.  Section 2.1 presents the sensor model, and Section 
2.2 presents the definition of effective signal-to-noise ratio 
that we use.  Section 2.3 briefly presents the Sampling, Im-
portance, Resampling (SIR) particle method filter [1,2,5] 
developed for these tests and Section 2.4 presents the Alter-
nating Direction Implicit (ADI) finite difference scheme 
[4,5,9,10] used here.  Section  2.5 presents the definitions of 
the performance metrics used in this evaluation.  Section 3 
presents results and Section 4 presents conclusions and sug-
gests a few directions for further work. 



2 Bayesian nonlinear filtering  
To track a target from a sequence of measurements ky  
made at discrete times kt , let the target dynamics be de-
scribed by an Ito stochastic differential equation [3] for the 
time-dependent target state tx   

 ttdtdttd tttt ≥+= ,),(),( βxGxfx  (1) 
 

where tx and f are n -vectors, G is an rn × matrix func-
tion, and },{ 0ttt ≥β  is an r -vector Brownian motion proc-

ess with dttddE tt )(}{ T Q=ββ .  

The observations up to time τ  are denoted 

}:{ τ≤=τ ll tY y  (2) 
 

Between observations the evolution of the conditional den-
sity is determined by the target dynamics as characterized by 
the Ito equation.  The time evolution of the joint density 
between measurements is the solution to the Fokker-Planck 
equation (FPE) 
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with initial condition given by )|( ktkt Yp x .   

Then given a new observation ky , the updated conditional 
density )|( ktkt Yp x  is obtained from the predicted density 

)|( 1−ktkt Yp x  using Bayes’ formula:  
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The minimum mean square error target state estimate tx̂  is 

∫= ttttt dYp xxxx )|(ˆ  (6) 
 

In this version of the challenge problem, we focus on the 
effect of measurement nonlinearity due to low SNR, and use 
a linear motion model, the so-called “nearly constant veloc-
ity” model with ( )T,,, yyxx=x , ( )T0,,0,)( yx=xf , and 

)(tG  and )(tQ  given by 
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The resulting FPE is  
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2.1 Sensor model 

An example of how to incorporate the likelihood function 
into NLF is presented by pixelized data such as point-target 
image-tracking applications.  Envelope-detected radar data 
takes a similar form.  In this case an image contains M  pix-
els labeled Mi ,,1= .  The measurement consists of the 

pixel output vector T
,1, ],,[ Mkkk yy=y where the iky , can 

be positive, real or complex, depending on the details of the 
sensor and signal processing. For point targets, pixel outputs 
are conditionally independent and  

)|()|(
1

, k
M

i
ikkk ypp xxy ∏=

=
 (9) 

 
When there is no target in a pixel, its output statistics are 
determined by the background rate )( ,0 ikyp .  Depending on 
the nature of the imager, this may be modeled by Rayleigh, 
Poisson, or more complicated distributions. Further, it may 
vary with pixel index and time, depending on the clutter 
statistics. When the target projects into a pixel i , its output 
statistics will be given by )( ,1 ikyp , which, again, may be 
pixel and time dependent and will depend on the detailed 
nature of the sensor and target.   

Using Bayes’ formula directly to update the density is cum-
bersome because it involves M  factors in the product for 
each discretized value of the target state vector ktx .  This 
can be simplified by defining the target-space to pixel-space 
projection: 
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This projection is a binary mapping from the target state to 
the pixel space.  Note that this is a highly nonlinear function 
of the target state.  For Doppler-sensitive sensors such as 
radar or ladar, this projection will depend on the target ve-
locity as well as its location.  Using the target-space to pixel-
space projection,  
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where xi  is the target-containing pixel (i.e.  

1)( =kkih xx ) and  
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is a constant that can be dropped in the Bayes’ formula up-
date.  With this expression only the measurement likelihood 
ratio 
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needs to be evaluated for each discretized  value of the tar-
get state vector kx , a significant saving in computation.   

To illustrate, for a Rayleigh target with SNR parameter λ , 
the probability distribution for intensity 

kiy x  of the target-

containing pixel is  
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The distribution for the background pixels is given by the 
same expression with 0=λ .  A little algebra shows that up 
to an irrelevant constant that can be dropped, the likelihood 
is  
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2.2 Effective SNR 

While signal-to-noise ratio (SNR) is often used to gauge 
likely performance for filter processes, it is only rigorously 
related to performance in the case of Gaussian signals.  The 
Kullback-Leibler discrimination, a more general quantity 
that is related to detection and estimation performance, is 
defined by  

( )∫≡ dyyqyqyqqqL )(/)(ln)();( 10010  (16) 
 

Its symmetrized relative, the divergence, is defined by 
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The divergence is a convenient measure of effective SNR. 
For a Gaussian signal given by  
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it is straightforward to find that  
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For Rayleigh distributed measurements with 
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Note that in the large λ  limit, the Rayleigh and Gaussian 
divergences are the same, while they differ significantly for 
small values of λ .   

2.3 Particle method  

Particle methods are a collection of Monte Carlo techniques 
in which the probability density is represented by a collec-
tion of N  independent and identically distributed random 
samples, ( ){ }Nii

k ,,1; =x . The samples ( )i
kx , referred to as 

particles, are distributed according to ( )kk
i

k Yp |~)( xx .   
Then the conditional likelihood is approximated by  
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where ( )xδ  is the Dirac δ -function in target state space.   

To implement a particle filter using the technique called 
Sampling, Importance, Resampling (SIR), we mechanize 
prediction and measurement update using the approximating 
density above.  For prediction at time k , we propagate each 
particle ( )i

k 1−x  by producing a single draw from 
( )( )i
kkp xx |1+ .  The predicted particles are denoted ( )i

kx  and 
the predicted density is approximated by  
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To perform measurement update, we can approximate (up to 
a normalization constant κ ) 
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where each particle is weighted by its measurement likeli-
hood ( ))(| i

kkyp x .  In the so-called Sequential Importance 
Sampling (SIS), this process is simply iterated.  The weight 

for particle i  after K  steps is ∏∝
=

−K

k

i
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is not a very effective algorithm since the particle trajecto-
ries are not influenced by the measurements at all.  As a 
result, they quickly diffuse away from the region of high 
likelihood and very poor estimation performance results.   

This problem with SIS is corrected in the Sampling Impor-
tance Resampling (SIR) algorithm.  Here a new set of parti-
cles is generated from the predicted set by resampling with 
likelihood ( ))(| i

kkyp x .  Thus particles with high likelihood 
are sampled many times while particles with low likelihood 
are unlikely to appear in the resampled set.  With this, we 
have the SIR algorithm: 

2.4 ADI finite difference method  

For the finite difference filter, we used the Alternating Di-
rection Implicit (ADI) scheme to solve the Fokker-Planck 
Equation.  Space and time are discretized on a uniform grid 
with time resolution t∆  and spatial resolution 

T),,,( yyxx ∆∆∆∆=∆x .  In this subsection p  denotes a 
continuum solution to the FPE while g  denotes a function 
defined on the grid that approximates p .   Defining the sub-
operators 
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the FPE can be written as  
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Discretizing in time but not in space, for now, we abbreviate 

),( k
k tpp x= .  The implicit Euler scheme [9] for the FPE is 

obtained by using a Taylor series in time for ),( ttp k ∆+x , 
leading to  
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Rearranging terms leads to  
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In principle, this expression can be solved for 1+kp  by in-
verting the operator ∑∆− i iAt1 , but direct inversion is 
computationally expensive.  An expression that is equivalent 
to ( )3)( tO ∆  but much simpler to invert is obtained by using 
the operator identity 
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It can be shown that, if x∆iA  is an ( )x∆O  discretization of 
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and the grid function g  defined by  
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approximates p  up to the error terms proportional to   
( ) ( )tOO ∆+∆x  (higher order approximations can be con-

structed, at some additional computational cost). 

To propagate the density, we solve Eq. (36) for 1+kg  using  

Particle Filter Algorithm (SIR) 
1. Initialization, 0=k : 
    ♦For Ni ,,1=  sample ( )0

)(
0 ~ xx pi  and set 1=k .

 
2. Prediction step: 
    ♦For Ni ,,1=  sample ( ))(
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3. Resampling step: 
    ♦Compute importance weights, )~|( )()( i
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    ♦Normalize the weights according to 
  )(max max i

ki
k ww = ; max)()( / k

i
k

i
k www ←  . 

    ♦Generate N  resampled particles ( ){ }Nii
t ,,1; =x  

         with ( ) ( )( ) )(1~Pr j
k

j
k

i
k w

N
== xx  . 

    ♦Set 1+← kk  and go to Step 2. 
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The essential point to note is that each factor ( )x∆∆− itA1  in 
Eq. (36) is inverted separately, simplifying the calculation.  
To discretize iA , abbreviate 1),,,,,( ±=∆±∆ xqyyxxxtkq ω  
with similar definitions for 11 ,, ±± ωqqx .  Using upwind 
differencing for the first order spatial derivatives, we have 
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with similar expressions for x∆3A  and x∆4A .  With this 
discretization, each operator ( )x∆∆− itA1  is tridiagonal and 
can be inverted using Thomas’s algorithm [9].   

To completely specify the FPE solution, it must be restricted 
to a finite domain leading to an initial-boundary value prob-
lem.  The finite grid domain consists of the points 

T
0000 ))(,)(,)(,)(( yllykkxjjxii ∆+∆+∆+∆+ , 

xNi ,,0= , xNj ,,0= , yNk ,,0= , yNl ,,0= ,  

where 00 ,, mi  are offsets used to translate the origin.  The 
total number of grid nodes is 

)1)(1)(1)(1( ++++ yyxx NNNN  while the number of un-

knowns is )1)(1)(1)(1( −−−−= yyxx NNNNN .  Bound-
ary conditions must be specified on this hyper-cube to de-
termine the solution to the FPE uniquely.  We assume that 
the target signal-to-noise ratio is sufficiently high that the 
target has been localized.   Then the density will be concen-
trated in some small region and decay exponentially far from 
this region.  We assumed that the grid was large enough that 
the density was small on its boundary.  With this motivation 
we used a homogenous Dirichlet condition with the solution 
held at 0 on the boundary.   

To reduce the size of the grid required to represent the target 
joint density and thereby save computations, the grid was 
translated after each measurement to approximately main-
tain the target’s location near its center.  After each meas-
urement update the target position estimate )ˆ,ˆ( tt yx  was 
evaluated and the grid was shifted to center of the grid near 
this position.  This was achieved by placing the lower left 
corner of the spatial grid at ),( 00 ji  where  

[ ]2//ˆ0 xNxxi −∆=  (40) 
[ ]2//ˆ0 yNyyj −∆=  (41) 

and [ ]x  denotes rounding to the nearest integer.  This al-
ways translated the grid by an integral multiple of ( )yx ∆∆ , .  
Grid nodes outside the intersection of the original and trans-
lated grids were set to 0.  

2.5 Tracking metrics 

The RMS values of position and velocity error were chosen 
as metrics to illustrate performance in this paper. Error is 
defined as the difference between estimate and truth, 

ttt xxe −= ˆ , where the estimate tx̂  is computed as the 
mean of the estimated density )|( ttp Yx . Although RMS 
accuracy alone does not provide a thorough characterization 
of performance in a general tracking problem, it would seem 
to be appropriate in this special case where there is just one 
target (the usual multi-track metrics degenerate or disap-
pear) and track state initialization is nearly perfect (e.g. con-
vergence times would be artificially small).  

As noted previously, it is expensive and unnecessary to 
compute the joint density over the entire range of motion. 
Instead, a computational gate is established on which to 
produce a solution, this gate being a small fixed-size subset 
of the motion region. The gate must be translated using es-
timates of target motion as inputs to a translation control 
algorithm. If the filter estimate drifts so far from the truth 
that the target exits the gate, lost lock occurs. With target 
observations lost, the filter diverges quickly and seldom 
recovers. The gate translation control problem was challeng-
ing anytime filter estimates were inaccurate, e.g. at startup 
or at the lowest SNRs. Lost lock events were logged and 
their frequency computed. 

3 Results 
Accuracy as measured by RMS error improves for the ADI 
method with finer grid resolution, and improves for the PF 
method with increasing numbers of particles. However, as 
grid resolution becomes finer, the computational burden for 
ADI grows polynomially, but as particle count increases, the 
computational burden for PF grows only linearly. Given 
such complexities at this fundamental level, it is easier and 
fairer to compare the two filtering methods on the basis of 
equal computational burden, which translates to “equal 
flops” in MATLAB. The results that follow examine per-
formance at a single constant value of 630 Kflops per study. 
This flop level translates to 5121 particles for PF, and a 
10x10x10x10 grid of 10,000 cells for ADI. 

3.1 Experiment methodology 

The estimation problem is to track a single dim target mov-
ing in a 2D space using intensity images of the track area for 
measurements. True target motion is generated using a 
nearly constant velocity (NCV) model of target dynamics, a 
model based on the assumption that acceleration is a white 
noise process, )()( twta = . The white noise in the NCV 
model imposes randomness in the motion so that a different 
true trajectory is produced on every Monte Carlo run. Target 
motion is represented in each filter by the same NCV model. 
This decision to match filter to truth avoids most mis-



modeling issues. For the results that follow, even the noise 
strength of the filter was matched to the truth.  

The simulated sensor images the entire target motion region 
to produce a scene of 256 x 256 pixels. The intensity in each 
pixel is governed by a Rayleigh distribution with noise 
power one, Eq. (22). In the pixel holding the target, the in-
tensity is adjusted for the SNR of the study, Eq. (21). Identi-
cal simulated sensor images are input to each filter as meas-
urements, but only the portion of the scene in the instanta-
neous gate contributes to the joint density estimate. 

The initial state of each filter is chosen to approximately 
match the truth. The initial density of each filter is uniform 
in each of the four dimensions ),,,( yyxx , and extends over 
the space in the initial gate. For the results that follow, the 
gate was fixed at 10x10 pixels in ),( yx  space. 

In the case of a lost lock event, accuracy degrades precipi-
tously and the run is effectively ruined. When this occurs, 
data from that run is removed from the study ensemble, and 
a new run is made to replace the spoiled one. 

Experimental results are based on studies of 50 Monte Carlo 
runs each. Studies were conducted for ADI and PF sepa-
rately, at 2 dB intervals in the range 4-20 dB effective SNR, 
Eq. (23). Altogether, 18 studies (9 each for PF and ADI) 
contributed to the results reported next. 

3.2 Discussion 

Figures 1-4 demonstrate how well each method is estimating 
the target state from the image data that it receives. Figure 1 
shows the PF estimate of the joint probability density func-
tion (pdf) for the position pair ),( yx  after that estimate has 
converged. Figure 2 shows the analogous estimate from the 
ADI method. Figures 3 and 4 are the corresponding joint pdf 
estimates for the velocity pair ),( yx . Note that PF densities 
were obtained by binning each particle into its correspond-
ing pixel square and then computing a histogram over all the 
squares in the particle cloud range. 

With the true target shown near the centroid of the pdf, Fig-
ures 1 and 3 demonstrate convergent behavior for the PF 
method. However, Figures 2 and 4 indicate that ADI is ex-
periencing significant estimation difficulties because the 
target is on the periphery of the pdf. Additional experiments 
with ADI at other tuning settings (e.g. filter process noise 
strength 10 and 100 times truth) show that position is usu-
ally estimated fairly well but velocity is not. RMS results 
will confirm these trends for both methods. 

Figures 5 and 6 show RMS performance in position and 
velocity for the two methods. These figures were built from 
the 18 Monte Carlo studies, each study consuming 630 
Kflops in its 50 runs. Figure 5 shows reasonably good esti-
mation of position for both methods. Position RMS error 
falls as SNR increases for both methods, as expected, with 
PF being roughly twice as accurate as ADI.  

Figure 6 shows improving velocity estimation for PF as 
SNR rises. For ADI, however, the RMS curve indicates poor 
estimation performance. Other tests were run to assess this 
situation, and they all confirmed that ADI was not estimat-
ing velocity. The resolution-induced limit on estimation 
accuracy for ADI is approximately 0.06 m/sec (2 m/sec 
spanned by 10 square grid cells) so the “flat” performance at 
roughly 0.45 m/sec is not resolution induced. We are not 
certain why ADI does not estimate velocity but we suspect a 
problem with its code. Unfortunately, this issue was discov-
ered rather recently and we failed to find a correction before 
this paper was due.  

Over the 50 simulation runs in each of the nine studies, PF 
was robust to both noise and target maneuvers, and on aver-
age lost lock just 4 times (4/54 ≈ 7%) per study when SNR 
was 12dB or less, and under once (<1%) per study when 
SNR was above 12dB. ADI however lost lock on average 32 
times (39%) per study at 4dB, 17 times (25%) at 8dB, and 
less than 4 times (0%-7%) for 10dB and above. For special 
studies with ADI at -3, 0 and 2 dB, the average number of 
lost lock events increased to well over 50%. Although 50-
run studies of ADI were possible at these low SNRs, the 
computational costs for discarding so many runs to get 50 
“good” ones were prohibitive. That is the main reason that 
lower SNRs were not examined. 

4 Summary 
This paper introduces a challenge problem in nonlinear fil-
tering that is made available to the research community in 
the form of MATLAB code posted at a public web site. This 
problem consists of modules for scenario generation and 
performance evaluation, as well as modules offering base-
line solutions for two methods, a particle filter and an alter-
nating direction implicit version of a finite difference 
scheme. These baseline solutions demonstrate in concrete 
terms how nonlinear methods can be applied to image inten-
sity data. We are hopeful that their availability will encour-
age researchers with innovative ideas to apply their methods 
to the same problem data that was used here. 

The authors are extending this work to add a solution meth-
od based on multi-scan multiple-hypothesis methods. Early 
experiments with this method suggest that it may produce 
results competitive with those obtained above for simple 
problem scenarios. 

 This paper also provides technical descriptions of the 
two solution techniques, and illustrates results from each. 
This effort has shown that both particle and finite difference 
methods can solve the dim target tracking problem, and that 
particle methods produce greater accuracy for equal compu-
tational resources. 
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Figure 1 –Position density snapshot, PF 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Position density snapshot, ADI 
 
 
 
 

 
Figure 3 – Velocity density snapshot, PF 

 

-30

-25

-20

-15

-10

-5

0

x position (m) 

y 
po

si
tio

n 
(m

) 

Particle Method -- Position Density 

66 68 70 72 74 76

56

58

60

62

64

66

Target 

 

-30

-25

-20

-15

-10

-5

0

ADI Method – Position Density 

x position (m) 

y 
po

si
tio

n 
(m

) 

40 42 44 46 48 50

48

49

50

51

52

53

54

55

56

57

58

Target 

 

-30

-25

-20

-15

-10

-5

0

x velocity (m/s) 

y 
ve

lo
ci

ty
 (

m
/s

) 

Particle Method -- Velocity Density 

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Target



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Velocity density snapshot, ADI 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 – RMS position error 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 – RMS velocity error 
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