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ABSTRACT 
 
This paper develops a multiple-frame multiple-hypothesis tracking (MF-MHT) method and applies it to the problem of 
maintaining track on a single moving target from dim images of the target scene. From measurements collected over 
several frames, the MF-MHT method generates multiple hypotheses concerning the trajectory of the target. Taken to-
gether, these hypotheses provide a smoothed and reliable estimate of the target state.  
 
This work supports TENET, an Air Force Research Laboratory project that is developing nonlinear estimation tech-
niques for tracking. TENET software was used to simulate both target dynamics and sensor measurements over a series 
of Monte Carlo experiments conducted at various signal-to-noise ratios (SNRs). Results are presented that compare 
computational complexity and accuracy of MF-MHT to two previously-documented nonlinear approaches to predetec-
tion tracking, a finite difference scheme and a particle filter method. Results show that MF-MHT requires about 2-3 dB 
more SNR to compete with the nonlinear methods on an equal footing. 
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1. INTRODUCTION 
 
Situations where sensors produce measurements of moving targets at low signal-to-noise ratios (SNR) challenge the abil-
ity of a tracker to maintain an effective estimate of the target state. For example, this situation can occur when a target is 
at the extreme range of the sensor. It is well known that predetection tracking can be used in such situations to avoid 
information losses caused by data thresholding1. Predetection tracking methods are those that use pixelized, unthresh-
olded measurement data as the estimation filter input, in preference to the usual thresholded partial target state measure-
ments such as range and range-rate.  
 
Predetection methods, also known as track-before-detect (TBD) methods, are implemented with a nonlinear filter (NLF) 
that estimates a general density, i.e. one without a presumed mathematical form. Estimation algorithms in nonlinear fil-
tering problems parallel Kalman algorithms for linear problems in that both contain time-propagation and measurement-
update stages that are invoked separately. Whereas Kalman can implement fairly simple algorithms to propagate and 
update a joint Gaussian density, NLF must use a numerical technique to propagate a general density through time and a 
Bayesian scheme at measurement update time. Although the two methods achieve similar results for their respective 
densities, NLF algorithms are considerably more complex and generally require many more computer cycles, especially 
during the time-propagation stage.  
 
The computational burdens associated with solving the propagation equations in nonlinear filtering represent a barrier to 
the usefulness of this otherwise promising estimation approach. In recognition of such NLF issues, the Air Force Re-
search Laboratory (AFRL) is fostering research in this area through a challenge problem that it calls TENET, Tech-
niques for Nonlinear Estimation of Tracks. TENET’s aim is to develop NLF solution methods that produce robust solu-
tions and execute in real or near-real time, and to demonstrate this NLF technology in appropriate applications. Tracking 
dim targets is one such application. 
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A previous paper documents two NLF methods that use TENET scenarios and metrics 2. These methods include a finite 
difference scheme named alternating direction implicit (ADI), and a particle filter (PF) method. The interested reader is 
referred to the TENET website where NLF software and related materials may be found 3.  
 
This paper introduces a tracking method that has its roots in traditional implementations, a method that we call multiple-
frame, multiple-hypothesis tracking, MF-MHT. Multiple hypothesis tracking methods like MF-MHT have typically been 
applied to multi-target tracking when SNR levels are high and Kalman techniques are appropriate1,4.  MHT methods 
have worked well in such applications because of their ability to handle the large combinatorial problems that attend the 
data association step, and because at high SNR there are few false alarms to confuse the picture and exacerbate the data 
association problem. Although we recognize that MHT methods are not tailored to low SNR applications, they were 
nonetheless used here in order to examine the limits of this well-regarded method in a stressful setting. We reasoned that 
if MF-MHT could perform nearly as well as the more computationally burdensome NLF methods, then perhaps the NLF 
implementations we had made were on a wrong tack and were in need of major repair. In addition, a high-performing 
MHT-type method provides a believable baseline for judging problem difficulty and performance. 
 
The remainder of this paper is organized as follows. Section 2 describes the TENET Simulator, focusing on its target 
motion and scene generation capabilities. Section 3 describes the MF-MHT algorithm that was implemented for this 
study. Section 4 compares MF-MHT performance with the two previous benchmark trackers, namely the particle filter 
and the finite difference scheme methods. Section 5 presents conclusions. 
 
 

2. TENET SIMULATOR 
 
The TENET Simulator is a suite of MATLAB  functions that provide a test bed for evaluating nonlinear filtering meth-
ods. TENET materials, including MATLAB  software, software documentation and publications, are openly available at 
https://www.tenet.vdl.afrl.af.mil. AFRL hopes that researchers will download and use these tools to contribute to the 
science and technology of nonlinear filtering. We would be pleased to hear from you if you use these materials. 
 
Currently, the TENET Simulator implements scenarios involving a single moving target and a single imaging sensor. 
The single target subtends one pixel and moves at nearly constant velocity (NCV) in a two-dimensional target region. 
The size of the target region, the initial position and velocity of the target, the target diffusion rate, and the run duration 
were all chosen judiciously so the target would not leave the region.  
 
A sensor provides noisy imagery of the entire target region once per second at a specified SNR. Although the target is 
not visible to the naked eye in any image sequence where SNR is low, over many measurements the target-containing 
pixels tend to exhibit greater intensity than the non-target pixels, a fact that predetection methods are able to exploit. At 
measurement update, the ADI and PF methods process the unthresholded image data using Bayesian techniques, 
whereas MF-MHT uses the usual Kalman update algebra. To help focus these results on the track maintenance problem, 
1) the mean of the estimate is initialized in every run at the actual target location, and 2) mis-modeling between truth and 
filter is non-existent. 
 
The simulator implements a Monte Carlo experiment in which the target trajectory and the sensor measurements vary 
during each run. The ensemble of run outputs from such an experiment is a study, from which performance can be 
evaluated from ensemble statistics. To maintain fairness in all experiments, each method was initialized identically and 
each was presented the same image sequence during corresponding runs. Finally, SNR was the primary independent 
variable in all of the results presented here. 
 
With the addition of the MF-MHT method, TENET now contains three tracker implementations, one based on particle 
filter methods, another on finite difference methods that use the alternating direction implicit algorithm, and finally the 
newest MF-MHT method. These simple baseline implementations provide three concrete illustrations of how to set up, 
solve and evaluate a track estimation problem using nonlinear filtering methods. The TENET Simulator will accommo-
date new tracker implementations in addition to the baseline set. The performance of any new tracking algorithm can be 
compared to the baseline methods using the provided metrics.  



2.1  Target dynamics 
Let the following stochastic differential equation describe the motion of a single target with state tx  between observa-
tions at times kt . 

1,),(),( +<≤+= kktttt tttdtdttd βxGxfx  (1) 

Here tx  and (.)f  are n -vectors, (.)G  is an rn ×  matrix function, and tdβ  is an r -vector Brownian motion process 

with dtttdtdE )(}T{ Q=ββ . Because Eq. (1) is general, it can describe all manner of complex stochastic dynamics. 
 
In this study, movement was restricted to a 2D target region where the target maintains nearly constant velocity with 
state vector ( )Tyxt vyvx=x , and dynamics ( )T00)( yxt vv=xf . In this very simple physics-based model, 
the TENET target diffuses at an equal rate q  in both directions. Thus 
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The TENET Simulator creates stochastic target trajectories per Eq. (1). These trajectories have randomized initial veloci-
ties, and have assigned values for diffusion strength Q , the time step between measurement updates, and the total time-
step count. When Q  values are low and initial speed is high, the trajectories have a shape resembling a smooth arc, 
whereas the trajectories are jagged and random in their appearance when Q  values are high and initial speed is low. 

2.2  Sensor image model 
Just as sensor images are uncorrelated in time, so their pixel-to-pixel intensities are uncorrelated in space. The model for 
producing such images must generate randomized background noise in target-free pixels, and a randomized intensity 
characteristic of the sensor-target interaction in the target-containing pixel. As it happens in TENET, all images needed 
to conduct a run are formed at run start from knowledge of noise and target densities, and from the target’s time-varying 
position.  
 
We adopt two Rayleigh distributions to describe the intensity in target-free and target-containing pixels. If there are M  
pixels labeled Mi ,,1K= , and iy  denotes intensity in the i-th pixel, )( io yp  denotes the density of background noise in 
target-free pixels, and )(1 gyp  denotes the density of target intensity in the target pixel gy , we can write  
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Equation (4) is dependent only on the SNR parameter λ . It is straightforward and computationally inexpensive to gen-
erate images by random sampling from these two Rayleigh densities.   
 
Note that the information-based quantity known as the divergence ),( qpL  (a measure of the separation between densi-
ties p  and q ) can be used as an “effective” signal-to-noise ratio2. For the Rayleigh densities in (3) and (4), the diver-



gence can be calculated in closed form as )1(),( 2
1 += λλppL o , a form that was used consistently in this study to des-

ignate SNR when discussing or presenting results. Generally, we will convert effective SNR to “units” of decibels using 
SNR = ])1(log[10 2 +λλ . 
 
See Figures 1 and 2 for examples of an unthresholded and thresholded sensor image . 
 
 

3. MULTIPLE-FRAME MULTIPLE-HYPOTHESIS TRACKER 
 
MHT techniques have been used successfully in a wide variety of real tracking applications and today are considered the 
most robust and accurate techniques available. These techniques are typically implemented to account for multiple tar-
gets, variable maneuver models, and a host of other special attributes that accompany real tracking problems. With 
TENET’s assumptions of one target and one steady maneuver, the challenge problem does not seriously challenge MHT 
capabilities except in one area -- the difficulty of identifying the real target among the huge numbers of false alarms that 
occur at low SNR. In this section we discuss the MHT method used here, which we call MF-MHT. We focus on imple-
mentation issues and in particular on our strategy for dealing with the large numbers of false alarms that arise as SNR 
drops off. 
 
As with most MHT-type techniques, MF-MHT derives its benefits from maintaining multiple hypotheses from which to 
choose a confirmed state estimate in a delayed declaration. However, since MF-MHT requires neither management of a 
large hypothesis tree nor hypothesis pruning, it avoids two major complexities usually associated with MHT methods.  
 
MF-MHT is implemented using the most-recent FramesN  images and STN  soft tracks, where both values are constants.  
A soft track is an estimated target trajectory with measurements assigned and processed up through the current time. Soft 
tracks are grouped in sets called track hypotheses, each set being a full explanation of the current target picture. In gen-
eral, different track hypotheses propose different numbers of targets because they use different sequences of data asso-
ciations between the image-derived measurements and the postulated tracks.  
 
In this implementation of MF-MHT, the number of tracks remains fixed (new tracks are not initialized after run start, 
and old tracks are not pruned). This “unity ground rule” leads to the conclusion that there is one and only one track at all 
times. The implications of the unity ground rule will be pointed out as the discussion unfolds. 
 
Each track hypothesis in MF-MHT carries a score representing its overall likelihood to explain the current target picture. 
This likelihood score is a composite of heuristic measures of likelihood in both the propagation and update stages, and is 
formed over the interval from track initiation to the present. Shortly, we shall discuss the method for computing these 
scores. The track hypothesis with the highest score is the best current hypothesis.  
 
If we look back over the last FramesN  images, the best predecessor hypothesis is called the confirmed hypothesis. 
Clearly, the confirmed hypothesis must contain the track or tracks that led to the best current hypothesis. The tracks in 
the confirmed hypothesis are called confirmed tracks or hard tracks. The declaration that yields hard tracks can be made 
at any time, and is made in this study after each image update. Experience shows that the hard tracks in the confirmed 
hypothesis are a better representation of the truth precisely because a delay is introduced. In this implementation the de-
lay is 5=FramesN  images (equivalent to 5 sec). Furthermore, there will be just one hard track in the confirmed hy-
pothesis because of the unity ground rule introduced above. 
 
To understand how tracks evolve in MF-MHT, first consider how a single track at frame k associates with gated meas-
urements (reports) at frame k+1. (Gating is discussed below.) Every distinct acceptable report-to-track association cre-
ates another new track (each report can be used in only one track), potentially resulting in a large number of new tracks 
from each new image. As this fan out is repeated on successive frames, the target count grows rapidly and can easily 
overwhelm available computational resources. Therefore, an important artifice for limiting the number of track hypothe-
ses is limiting the number of candidate reports that can be associated with each existing track. Denoting this number as 



CandidatesN  and assuming that exactly CandidatesN  report-to-track associations are made in each image for each track, the 
number of soft tracks in the problem will grow to the following value in steady state. 

1)( −= FramesN
CandidatesST NN  (5) 

In this implementation of MF-MHT, 7=CandidatesN  reports so 240174 ==STN  tracks in steady state, a count that is 
present from the 5-th image to the last. 
 
Candidate reports are the pixel locations of the CandidatesN  measurements with the largest intensities in and around an 
update gate. The update gate defines the part of the target region that is searched to identify candidate reports for a par-
ticular track. In this study, the update gate at time −

kt  was a circle with center at the expected track location and radius 
equal to the geometric mean of the standard deviations of position. Thus the center is )ˆ,ˆ( yx  and the radius is 

2/1)( yx σσ , where all values are taken from track estimates at time −
kt .  

 
It can happen that there are reports that lie outside the update gate that would be reasonable to include. When such re-
ports are within two gate radii, the philosophy adopted here is that they can be candidates too, but at a price. The price is 
to reduce their strength per the following weighting formula 
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where each l  is an observed intensity in a pixel, and r  is the distance in pixels from the gate center to the pixel center. 
The chosen reports are the best CandidatesN  from the weighted set of Eq. (6). Note that weightings are only used for se-
lecting candidates. Actual measurements are used in updating track estimates and in computing the measurement update 
component of the likelihood score. 
 
Before discussing track likelihood scoring, we need to introduce the standard Kalman implementation that was used to 
form estimates. We modeled target dynamics using the standard discrete-time Markov form of the Kalman filter. 
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where the transition matrix for a time step of t∆  seconds is  
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and Q  is defined in (2).   
 
Measurement update is also patterned after standard Kalman procedures, beginning with the measurement equation 

kk vxHz += ˆ~  (10) 



where the measurement distribution and noise strength matrices are 
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Now defining S  as the variance of the innovation 
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the kinematic likelihood score for each track is updated using the position innovation. 
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Similarly, the measurement likelihood score is updated as 

k
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k
Sen LL ×=+ µ1  (15) 

where µ  is the observed intensity normalized on a scale of zero to one. 
 
After all track estimates and likelihoods have been updated, the kinematic and sensor likelihoods are then multiplied 
with one another to form the combined likelihood score as 

KinSen LLL ×=  (16) 

The maximum likelihood soft track determines which estimated state and covariance values at time 1+− FramesNk up-
date the target estimates at time FramesNk − . The position estimate declaration delay is therefore the number of frames 
minus one.  
 
As noted above, each track hypothesis carries a likelihood score representing its ability to explain the current target pic-
ture. A track’s likelihood score is comprised of components that evaluate both kinematics and sensor image measure-
ments. These two components must be multiplied together to achieve best performance.  
 
The best soft track of the 2401 hypotheses is that track with the highest likelihood score. This evaluation was made 
based on the product of the product of the kinematic and measurement component scores. To prevent underflow, the 
composite likelihood score was renormalized to unity after each measurement update. 
 
 

4. RESULTS 
 
The purpose of the experiments presented in this section is to compare the three tracking methods (PF, ADI and MF-
MHT) to each other. We discuss metrics, experimental setup, and numerical results. 



4.1  Metrics 
RMS position and velocity error were chosen as metrics to illustrate performance in this paper. Error is defined as the 
difference between estimate and truth, ttt xxe −= ˆ , where the estimate tx̂  is computed as the mean of the a posteriori 
density estimate )|( ttp Yx .  Although RMS accuracy alone does not provide a thorough characterization of performance 
in a general tracking problem, it would seem to be appropriate in this special case where there is just one target (the 
usual multi-track metrics degenerate or disappear) and track state initialization is exceptionally good (which greatly di-
minishes the normal convergence transients).  
 
As noted previously, it is expensive and unnecessary to compute the joint density for the two nonlinear methods (PF and 
ADI) over the entire range of motion. Instead, a computational gate was established on which to produce a solution, this 
gate being a small fixed-size subset of the full target region. As the target moves, the computational gate is translated to 
keep the position of the propagated target approximately centered in the gate. Because estimated position is used in the 
gate control algorithm, the actual target may drift and exit the gate when the filter estimate is poor. When the target exits 
the computational gate, we declare a lost lock event, the run output is discarded, and the run is restarted from time zero. 
These actions were necessary because, without target observations, the filter has no mechanism to recover and usually 
diverges rapidly. As expected, lost locks occur more frequently at the lower SNR levels where estimates are poorest, and 
at run startup before the covariance cross terms are developed. Lost lock events indicate problems in the estimation 
process, and were therefore logged. 

4.2  Experimental setup 
At each observation, the simulated sensor imaged the entire target region and produced a scene of 256 x 256 pixels. The 
intensity in each non-target pixel is governed by the Rayleigh distribution of Eq. (3) with noise power one. In the pixel 
with the target, the intensity is adjusted for the SNR of the study, Eq. (4). Identical simulated sensor images are input to 
each filter as measurements, but only the portion of the scene in the computational gate contributes to the joint density 
estimate. ADI and MF-MHT methods perform this gating similarly by selecting only pixels within the a predetermined 
range whereas PF method gates by the assigning a likelihood of zero to pixels that are outside the range of the diffusion 
of particles. The initial values of each track filter are chosen to match the truth. The initial density of each filter is uni-
form in each of the four dimensions of state tx  and extends over the region in the initial gate. For the results that follow, 
the computational gate was fixed at 10x10 pixels in ),( yx .  
 
In the case of a lost lock event, accuracy degrades precipitously and the run is effectively ruined. When this occurs, data 
from that run is removed from the study ensemble, and a new run is made to replace the spoiled one.    
 
Experimental results are based on studies of 50 Monte Carlo runs of 100 seconds duration with measurements taken at 
the rate of one frame per second. Studies were conducted for MF-MHT, ADI and PF separately, at 2 dB intervals in the 
range 4-20 dB effective SNR.  

4.3  Numerical results 
For this study we allotted a fixed budget of floating point operations (flops) to each method since some methods are bet-
ter vectorized for faster operation in MATLAB  than others. The flop budget for this study was 6Mflops. The results 
shown in Figure 3 show the RMS error over the ensemble of 50 Monte Carlo runs for each of the three filters. The parti-
cle filter method performs best and MF-MHT is slightly worse than ADI down to 6dB. The velocity error shown in Fig-
ure 4 shows that MF-MHT is twice that of PF but five times better than ADI. The position variances are comparable for 
all filters above 8dB and MF-MHT is comparable to ADI between 4 and 6dB as shown in Figure 5.  Figure 6 shows that 
the velocity variance is nearly as good as PF. The processing time is comparable to PF given the number of hypotheses 
and particles that were selected. 
 



 
5. CONCLUSION 

 
The MF-MHT approach successfully tracks the target to about 6dB SNR. As SNR dropped below 6dB, the frequency of 
both break lock and lost lock events increased. The results show that RMS accuracy performance is comparable to ADI 
down to 6dB SNR, but that MF-MHT has faster processing that is comparable to PF. For problems where a single target 
must be tracked at SNR levels down to 6 dB, the MF-MHT method may prove to be the best candidate. 
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Figure 1. Unthresholded image at 6 dB effective SNR 

 
Figure 2. Thresholded image at 6 dB effective SNR 

 
 



 
 

Figure 3. RMS Position Error Figure 4. RMS Velocity Error 

Figure 5. Position Error Variance Figure 6. Velocity Error Variance 

Figure 7. Processing Time 
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