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Abstract 

Initial versions of the AE9/AP9-IRENE climatology model separated energetic (>~100 keV) particles into 
high- and low-altitude grids that were developed and run together, and low energy (<~100 keV) particles 
into a completely separate plasma model. The high energy and plasma results were combined in post-
processing. This arrangement led to some anomalies, such as discontinuities at the energy boundary and 
statistical perturbations that should have been correlated across the energy boundary between models 
being handled independently. Further, this initial structure limits the extensibility of the model to 
accommodate sub-models (or “modules”) of specific regions of space or particle populations. In this 
report, we describe development of a new architecture that abstracts the different regions or particle 
populations into separate modules. This new module architecture allows the plasma particles to be 
combined correctly and smoothly with the higher-energy particles at runtime while also generalizing and 
standardizing the interconnections between modules. The new architecture, therefore, addresses statistical 
shortcomings of the older architecture while also preparing for future extensions when new particle 
populations, such as solar protons, are incorporated into the model. At this time, the module architecture 
only covers static environments, since the plasma environment does not yet have dynamic capability to be 
merged with the dynamics of higher-energy particles. 
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1. Introduction 

AE9/AP9-IRENE is a climatology model of the trapped radiation and plasma near Earth, which is 
periodically updated with new data, new capabilities, and improved methodology [2][3][9]. In this report, 
we describe the first stage in a major architectural change, variously referred to as the “version 2.0 
architecture” or the “module architecture.” In the current architecture (through at least version 1.5), there 
are separate high-energy (radiation) models (AE9 and AP9) and low-energy (plasma) models (SPME, 
SPMH, etc.). The high-energy models have high- and low-altitude sub-grids within them; combining 
high- and low-energy models is done in post-processing. In the new architecture, the model consists of 
single-grid modules that are stitched together at runtime. In this first stage of the module architecture 
transition, we implement mainly the changes needed for static environments, leaving the upgrade of 
Monte Carlo dynamics to a future development. 

This report is broken into three technical areas: (1) changes to the precomputed tables and the turnkey 
system that generates them, (2) changes to the runtime calculations that evaluate the model and compute 
quantities requested by the user, and (3) future development needs to fully flesh out the module 
architecture as envisioned by the AE9/AP9-IRENE team and its users. The prototype code implements 
the turnkey and runtime changes, and this document explains the purpose and algorithms for them. 
Included in the exposition is a brief demonstration of how the module architecture stitches the low- and 
high-energy components of the proton environment together. 
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2. Changes to the Turnkey System and Precomputed Tables 

One important change in the module architecture is that the turnkey code that generates the runtime tables 
is now written in Python. This rewrite was largely a translation of the old MATLAB turnkey code, with 
changes for the module architecture made as needed along the way. The change to Python dramatically 
simplifies the use of parallelization, since MATLAB is licensed software and requires purchase and 
management of every license used in a multithread/multicore environment. In prior versions, the 
management of MATLAB licenses was avoided through the use of GNU Octave [1], a free, open-source 
MATLAB work-alike for which parallelization was possible but not a native behavior. Since Python is 
free open-source software, it has no such license restrictions and has robust support for parallelization 
built in. The other major changes to the turnkey system are: 

• breaking up the high- and low-altitude AE9/AP9 models into distinct modules 
• associated restructuring of the data files 
• coordinating sensor groupings across modules for bootstrapping 
• designating which models have correlated “Stheta” (Sθ) for perturbing flux maps 

The original turnkey system is described in Generation of AE9/AP9/SPM V1.0 Runtime Tables 
(Aerospace Report Number TOR-2014-00295) [6]. 

The module architecture breaks up the high- and low-altitude portions of the AE9 and AP9 sub-models 
into individual modules. Every module now covers only a single grid. So, whereas there was previously a 
single AP9 model with two sub-grids, there is now a pair of modules: AP9V20Kphi, which covers the 
high-altitude grid (in K,Φ coordinates), and AP9V20Khmin, which covers the low-altitude grid (in K,hmin 
coordinates). AE9 is similarly split into AE9V20KPhi and AE9V20Khmin. The SPMH and SPME 
models are recast as modules SPMHV20AlphaLm and SPMEV20AlphaLm.  

Although the module architecture does not yet address Monte Carlo mode, the module data files no longer 
store any Monte Carlo information (previously the AE9 and AP9 data files stored the Monte Carlo 
evolution tables). In the new architecture, the data files are plain HDF5 files (not MATLAB .mat files 
stored in MATLAB’s structured HDF5 format). Table 1 provides a short summary of the contents of a 
module file. A typical runtime tables file has a name such as AP9V20Khmin_runtime_tables.h5. An 
accompanying idiosyncratic Stheta file AP9V20Khmin_runtime_tables_idio_Stheta.h5 contains only 
whichm, info_string, and Stheta for use in idiosyncratic runs that represent model variants that might 
occur if only a single in situ dataset were available (used for model validation). 

Another change to the turnkey system is that sensors are grouped together at the top (project) level, rather 
than at the model or module level. Thus all sensors from a given mission are grouped together. Part of 
estimating the model errors is resampling different sets of sensors and rebuilding the flux maps to 
determine how much the addition of new sensor data will change the flux maps. Resampling during 
bootstrapping causes the same missions to be included in the same bootstrap group across modules. For 
example, bootstrap draw 1 might include the Polar mission but not Van Allen Probes, and this will be true 
regardless of which module is being built (AE9V20Khmin, AE9V20KPhi, AP9V20Khmin, 
SPMHV20AlphaLm, etc.). By controlling the seeding of the random number generator, the same sensor 
groups are drawn in the same order for all modules when bootstrapping over groupings. If a group is 
drawn with no sensors for the module being constructed, another group is drawn at random (from a 
different random number generator so as not to affect the progression through the seeded random 
sequence). This is one part of enabling the possibility for correlated model errors across modules. For the 
idiosyncratic Sθ, the same approach is taken, but only one sensor group is drawn with the seeded random 
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number generator, and only one sensor is drawn from that group, using a different random number 
generator. 

The other part of ensuring model errors are correlated across modules is Sθ grouping. (Sθ) can be thought 
of as a large matrix where the columns represent different bootstrap cases, and the rows span the grid of 
the module first for θ1 then for θ2 (the parameters of the flux probability distribution at each grid point). 
All modules that should have correlated errors are listed in a settings file (settings.py) as belonging to an 
Sθ group. At present, the Sθ groups are done only by species so that, for example, there are three modules 
in the proton group (AP9V20Khmin, AP9V20KPhi, and SPHMV20AlphaLm). Because the different 
bootstraps used to generate module-specific Sθ matrices share the same sensor groups across all modules, 
all their columns correspond to the same combinations of missions. Therefore, as illustrated in Figure 1, 
we can assemble a super- Sθ by stacking the individual Sθ matrices for the entire group (each Sθ matrix is 
appended as additional rows in the super- Sθ matrix). We use linear algebra (singular value 
decomposition) to simplify this super-Sθ matrix into fewer columns, which represent the essential 
uncertainty in the flux maps. Then we break this reduced super- Sθ matrix back up into new Sθ  matrices, 
one for each module. These new Sθ matrices all have the same number of columns as each other (fewer 
columns than the original), and they all have the same number of rows as the original Sθ matrix for the 
module they came from. This whole procedure enables generation of correlated errors at runtime because 
the process of building these Sθ matrices has preserved the uncertainty associated with adding or 
subtracting a subset of missions to or from our observation set. 

The rest of the turnkey system was translated from MATLAB to Python with essentially no change. The 
entire process is illustrated in Figure 2. A minor note is that the MATLAB version used many temporary 
files stored in .mat format (MATLAB’s HDF5-based save format), while the Python version uses so-
called “pickle” files. Whereas the MATLAB save files could, in principle, be read by many other 
languages, Python pickle files are not easily read by other languages. A future improvement to the 
turnkey code may be to replace the pickle files with a structured use of HDF5 or other hierarchical data 
file format. 

Table 1.  Contents of a Module File 

Variable Type Contents 
whichm string module name, e.g., AE9V20KPhi 
fluxunit string #/cm^2/sr/s/MeV 
species string Particle species, e.g., electron 
marginal_type string Marginal distribution type, e.g., lognormal 
stheta_perturb_style string How Stheta is perturbed, e.g., uniform 
theta Nx2 real Statistical parameters of flux map 
Stheta (2N)xM real Flux map parameters error covariance 
info_string string Module build information 
capabilities list of strings List of module capabilities, e.g., MEAN,… 
grid structure Structured module grid description 
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Figure 1.  The process of combining, reducing, and then parsing the Sθ matrices  

to ensure flux map uncertainties are correlated across models. 
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Figure 2.  The turnkey system for generating the runtime data tables used by the module architecture. 
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3. Changes to the Runtime Algorithms 

The bulk of the changes to realize the module architecture occur in the runtime algorithms. Some time 
ago, the runtime algorithms had already been rewritten in Python from a MATLAB prototype, so 
incorporating the new module architecture algorithms was a more typical modification, not a rewrite-in-
translation. 

At a high level, the new architecture starts with a module catalog that specifies which modules are 
available, what energies they cover, and how they are stitched together. To ensure that expensive 
magnetic coordinate calculations are not repeated, a coordinate manager is introduced to cache and share 
coordinate calculations between modules. Because stitching may occur across energies, we also introduce 
a general-purpose concept of a “flux transform,” which converts differential flux into other quantities. 
This transform frees the module from having to do the work of converting to user’s requested energy 
channels (and types of energy channels). It can also incorporate the kernel function that converts from 
flux to dose or other effect quantities. 

3.1 Module Catalog 

The module catalogue is an eXtensible Markup Language (XML) text file. Figure 3 depicts the module 
catalog only for the proton modules, although the catalogue would normally include electrons and ions as 
well. The figure shows three modules and two stitches. Each module has a species and a lower and upper 
energy limit, in MeV. Each stitch has a species, coordinate, and transform type. A “Linear” stitch 
progressively weights the lower module from 1 to 0 and the upper module from 0 to 1, in a linear fashion, 
as the designated coordinate varies from the lower to upper limit. A “Log” transform type indicates that 
the transition takes place as a linear function of the logarithm of the stitch coordinate. The sign of the 
transition is implied by whether the upper and lower limit are in increasing or decreasing order. A stitch 
may be applied simultaneously to multiple upper or lower modules, as is seen for the energy stitch—it 
stitches both AP9 modules as upper modules to the SPMH lower module. Whereas in the prior versions 
of AE9/AP9-IRENE, the user specified which model to run, the new architecture allows the user to 
specify what outputs are desired, and the module catalog is used to determine which modules are needed. 

3.2 Output Requests 

The user specifies one or more output requests. An output request requires a species, a transform, and an 
accumulator. The species designators are e-, H+, He+, and O+. A transform can be a differential flux 
interpolation (i.e., from differential flux to differential flux but on different energy channels), a wide flux 
transform (energy channels with finite width), an integral flux transform, or a kernel flux transform [5][8]. 
In the past, conversion from model energy channels to user-requested energy channels was considered 
part of the calculation of the model weights (spatial and energy interpolation/integration were done 
together) [4]. In the module architecture, the modules work exclusively at their native energy channels, 
and each module can use its own idiosyncratic energy grid. By allowing multiple output requests in a 
single run, the new architecture allows calculation of differential and integral channels in the same run. 
The accumulators are an extended set of the ones already available in prior versions of AE9/AP9-IRENE: 
mean, fluence, running boxcar average, running exponential average [7]. An option (usually employed) is 
provided to the boxcar average and exponential average to report the running maximum. The 
accumulators actually manage the flux transforms, since this can gain some efficiencies both in terms of 
compute time and numerics. For example, the averaging is linear, so computation can be saved by 
applying the kernels only when reporting results. However, if running maxima are needed, maximum is a 
nonlinear operation, so the kernels must be applied every time step. Conversely, energy interpolation 
transforms should be thought of as nonlinear kernels and should be performed after all the linear 
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operations to achieve the best numerics. We note that the module architecture will assume power-law and 
semi-log flux interpolation between energy grid points when performing energy interpolation and 
integration, which is why these flux-to-flux transforms are effectively nonlinear, even if they are 
nominally linear operations (see Appendix A). 

An output request can also supply optional report cadence, specific report times, and a specific run type. 
The report cadence is helpful when the user needs to know the accumulator results at a uniform cadence, 
such as daily, monthly, or yearly. The specified report times are useful for non-periodic orbits, such as 
solar-electric orbit raising. Together, these options reduce the amount of output produced by the model, 
and they can also reduce the amount of computation, as, for example, kernel transforms may only need to 
be performed at reporting times, not at all time steps. The run types are an extended set of options already 
available in AE9/AP9-IRENE: mean, perturbed mean, idiosyncratic perturbed mean, Monte Carlo, 
unperturbed Monte Carlo, idiosyncratic perturbed Monte Carlo, static percentile, perturbed percentile, 
idiosyncratic perturbed percentile. The idiosyncratic variants use the idiosyncratic Sθ to perform flux map 
perturbations. Some of these run modes have further options, such as percentile or scenario. Since 
multiple output requests are allowed in a single simulation, multiple scenarios or even multiple run modes 
can be performed, allowing maximum re-use of calculations. Note: the flyin function (actually called 
flyin2 to distinguish it from the function used in prior versions) allows top-level options to control the 
default report cadence/times and run mode, or those options can be specified uniquely with some or all 
output requests. 

3.3 Run Preparation 

One of the first steps in the new architecture is identifying which modules are active. The first 
determinant is whether the module species matches any of the output request species. The second 
determinant is energy range: a module is active unless its lower bound is higher than the upper energy 
requested for all output requests, or its upper bound is lower than the lower energy requested for all 
output requests for its species. (At this time, the module architecture prototype does not support multi-
species output requests, such as “total dose,” which combines dose from protons and electrons.) 

Once the active modules are identified, the active stitches must be identified. A stitch is active if at least 
one of its lower modules is active and at least one of its upper modules is active. 

If the user has requested omnidirectional quantities (integrated over all angles of incidence), a virtual 
angle grid is created that starts at 5 degrees local pitch angle, and then has points at 10, 20, … 90 degrees. 
This is the same pitch angle grid used for omnidirectional calculations in the prior versions of the model. 

A coordinate manager (CM) is then created, which caches magnetic coordinates and partial results needed 
for their computation. It is used to prevent repetition of costly calculations, such as magnetic field line 
tracing or evaluation of neural networks. The CM stores all the computed coordinates as a function of 
time and direction (angle).  

The next step is to determine which energies are used from each active module by figuring out which 
module energy channels are needed by each transform. For example, if the user only asks for a few 
differential energy channels, then only the surrounding energies are needed for interpolation. A set of 
flags is used for each module to keep track of which energies are used, saving calculation time spent 
generating fluxes at unused energies. 

The final step is to initialize the scenes used by each of the run modes. A scene instantiates (and, in Monte 
Carlo mode, evolves) the flux map for a given module for a given run mode. Since a scene is tied to a run 
mode, scenes can be shared by output requests that use the same run mode. For example, all output 
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requests using perturbed mean scenario 32 can share the same scenes (one scene for each module). This 
scene sharing saves memory and compute time. 

Figure 4 provides an overview of the runtime algorithm for the module architecture, including the 
preparation steps as well as the time-stepping loop. 

3.4 Time-Stepping Loop 

After the run preparation is finished, the runtime algorithm actually begins to loop through the time steps 
requested by the user. At each time step, the spacecraft’s magnetic coordinates (with the CM) are 
computed, and the interpolation weights from the model coordinates onto the spacecraft location. 
Sometimes these quantities are precomputed and stored. Because they do not involve energy 
interpolation/integration, these weights are the same across all scenes for a given module at a given time 
step for all output requests. 

Next, the algorithm loops over each output request interpolating the flux from the scene flux map onto the 
spacecraft location using the module-specific weights. Then, separately for each direction, the fluxes are 
stitched together. Each stitcher provides a weight from 0 to 1 for its associated modules. Each flux (which 
depends on energy and direction) is multiplied by each weight for its associated active stitchers. There 
may be multiple active stitchers for a given module (e.g., an hmin stitcher and an energy stitcher), and both 
weights are multiplied by the associated flux. At this point, each module contributes flux versus energy 
and direction, but the energies are module specific. A merged energy list is created that includes all the 
energies from all the active modules, and the fluxes from each module are interpolated onto this energy 
list. At out-of-range energies, interpolated fluxes are set to zero. Otherwise, log-log interpolation is used 
when fluxes are positive, and log-linear interpolation is used when one involved flux is zero. We usually 
refer to this as “smart log interpolation,” and it is given by Eq. (a) in Appendix A. The interpolated fluxes 
from each module are then added together. If the user requested omnidirectional flux, at this time, the 
omnidirectional integral is performed using the same angular weighting scheme from prior versions: 

 ℎ𝑖𝑖 = 𝛼𝛼𝑖𝑖+1�𝐼𝐼0(𝛼𝛼𝑖𝑖+1)−𝐼𝐼0(𝛼𝛼𝑖𝑖)�−�𝐼𝐼1(𝛼𝛼𝑖𝑖+1)−𝐼𝐼1(𝛼𝛼𝑖𝑖)�
𝛼𝛼𝑖𝑖+1−𝛼𝛼𝑖𝑖

+ �𝐼𝐼1(𝛼𝛼𝑖𝑖)−𝐼𝐼0(𝛼𝛼𝑖𝑖−1)�−𝛼𝛼𝑖𝑖−1�𝐼𝐼0(𝛼𝛼𝑖𝑖)−𝐼𝐼0(𝛼𝛼𝑖𝑖−1)�
𝛼𝛼𝑖𝑖−𝛼𝛼𝑖𝑖−1

 (1) 

 𝐼𝐼0(𝛼𝛼) = 1 − cos𝛼𝛼 (2) 

 𝐼𝐼1(𝛼𝛼) = sin𝛼𝛼 − 𝛼𝛼 cos𝛼𝛼 (3) 

Here, local pitch angle 𝛼𝛼 is taken in radians. When one 𝛼𝛼𝑖𝑖+1 or 𝛼𝛼𝑖𝑖−1 is off either end of the list of pitch 
angles, the term it’s used in is left out of hi. The angular integral must be done after the stitching because, 
at a given location, different angles of incidence may come from different modules; e.g., particles coming 
from near the magnetic field direction (low pitch angle) will come from the K-hmin module, while particles 
coming perpendicular to the magnetic field direction may come from the K-Φ module, so the stitching is 
angle dependent.  

At this point in the time-stepping loop, the flux for each output request is fed into its accumulator, which 
handles the flux transform, if needed, as well as time integration and averaging. Then the time tag is 
compared to output reporting times/cadence to determine whether it is time to report the results. If so, the 
output request, accumulator, and flux transform are used together as needed to produce the required 
output, which is stored for the user. 
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Figure 3.  Module catalog XML file.  

 

<ModuleCatalog> 
 

<Module> 
<Name>AP9V20KPhi</Name> 
<Species>H+</Species> 
<LowEnergy>0.1</LowEnergy> 
<HighEnergy>2000</HighEnergy> 

</Module> 
 
<Module> 

<Name>AP9V20Khmin</Name> 
<Species>H+</Species> 
<LowEnergy>0.1</LowEnergy> 
<HighEnergy>2000</HighEnergy> 

</Module> 
 
<Module> 

<Name>SPMHV20AlphaLm</Name> 
<Species>H+</Species> 
<LowEnergy>0.001</LowEnergy> 
<HighEnergy>0.1643</HighEnergy> 

</Module> 
 
<Stitch> 

<Species>H+</Species> 
<LowerModule>SPMHV20AlphaLm</LowerModule> 
<UpperModule>AP9V20KPhi</UpperModule> 
<UpperModule>AP9V20Khmin</UpperModule> 
<Coordinate>Energy</Coordinate> 
<TransformType>Log</TransformType> 
<LowerLimit>0.1</LowerLimit> 
<UpperLimit>0.1643</UpperLimit> 

</Stitch> 
 
<Stitch> 

<Species>H+</Species> 
<LowerModule>AP9V20Khmin</LowerModule> 
<UpperModule>AP9V20KPhi</UpperModule> 
<Coordinate>hmin</Coordinate> 
<TransformType>Linear</TransformType> 
<LowerLimit>600</LowerLimit> 
<UpperLimit>1000</UpperLimit> 

</Stitch> 
… 
 
</ModuleCatalog> 
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Figure 4.  The runtime algorithm for the module architecture. 
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4. Stitching Demonstration 

To demonstrate the stitching in a realistic case, we flew a geostationary orbit through one day in the new 
module architecture. We ran 40 perturbed mean scenarios, and computed the 50-, 75-, and 95-percent 
confidence levels (CLs). The Python prototype code allows an option to exclude or include only certain 
modules. This enables us to show the SPMH (plasma) and AP9 (high energy) parts of the model in 
isolation. The AP9 part of the model itself includes the AP9V20Khmin (low altitude) and AP9V20KPhi 
(high altitude) spatial modules, which are stitched together at runtime. The SPMH part of the model is a 
single module, SPMHV20AlphaLm. Normally, all three of the modules are run together, but we have 
broken out SPMH and AP9 to show how the earlier versions (prior to v2.0) would appear. 

Figure 5 shows that SPMH still has unrealistically little uncertainty, causing all three CLs to be nearly the 
same (they differ by only a few percent). This is a known issue that is still being worked by the AE9/AP9 
development team. SPMH also has slightly lower flux at its high end than AP9 has at its low end, at least 
at geostationary orbit. Manually connecting the SPMH CLs to AP9 CLs would create a discontinuity at 
the low-high energy boundary. The module architecture resolves this issue by gradually stitching AP9 and 
SPMH together with a log-linear transition from 100 to 164.3 keV at every point along the spacecraft 
orbit, well before the CLs are computed. The resulting CLs show a more realistic smooth transition from 
the very low uncertainty in SPMH at low energies to the more realistic uncertainties at high energy in 
AP9. Thus the module architecture has achieved one of its goals: to remove unphysical discontinuities 
from the statistical outputs of the model. 
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Figure 5.  Average integral proton flux at geostationary orbit for the plasma (SPMH)  

and high-energy (AP9) parts of the model at three CLs. 
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5. Future Improvements 

Several future improvements are apparent or necessary at this stage in the module architecture 
development. First and foremost is incorporation of a Monte Carlo engine. Presumably this will be 
another major tag in the module catalog, and its code counterpart will manage the shared state among the 
modules that coordinate their dynamic evolution. A version of this already exists in the AE9 and AP9 
models in v1.5 and prior, but its structure is hard-coded into the model. A new framework will be needed 
to abstract that structure and move its settings into the module catalog. One of the biggest challenges is 
how/whether to allow modules with different time cadences to share state, or whether different Monte 
Carlo engines at different cadences will be used depending on which modules are active. 

The next needed improvement is a way to manage output requests that cover multiple species. The first of 
these will need to address “total” dose that includes proton and electron effects. Farther in the future, 
single-event effects output requests will be needed that combine proton and heavy ion effects. 

In this report, we have looked only at protons. That was driven in part by the fact that the electron plasma 
model (SPME) and electron radiation model (AE9) do not overlap in energy at this time—they have a 
boundary at 40 keV, whereas the proton models (SPMH and AP9) overlap from 100 keV to 164 keV. 
Without overlapping energies, it is not possible to gradually stitch the electron plasma and radiation 
models. A critical step in enabling that stitching is the creation of electron plasma templates that extend 
the SPME map to 100 keV. Ideally, the modules have substantial energy overlap, allowing sensor data to 
bridge the stitching gap and ensuring that the high energy of the lower module and the low energy of the 
upper module match well before stitching. 

Finally, two performance improvements are available. One performance improvement can be achieved if 
the kernels are augmented with a caching capability so that if the same particle spectrum is fed in a 
second time, the result from the previous evaluation is returned. This will potentially save many matrix-
vector multiplications, when multiple different output requests are using the same kernel (e.g., as inputs to 
different worst-case running averages of internal charging with different time constants). Another 
performance improvement can be achieved if the stitching weights are computed and stored before the 
full spatial interpolation weights are computed. This may save calculation of some magnetic coordinates 
for modules that have zero stitching weight. 

 



14 

6. Conclusions 

We have described upgrades to the turnkey and runtime algorithms for the AE9/AP9-IRENE radiation 
and plasma climatology model to support the new module architecture. The new architecture represents 
the environment as a set of single-grid modules that are stitched together at runtime. To enable this 
change in architecture, new algorithms were needed in the turnkey system to properly capture the 
correlation in model uncertainty across modules—specifically, uncertainty associated with the addition of 
future datasets. The runtime algorithms evolved substantially, including not only the runtime stitching of 
modules at energy and spatial boundaries, but also a new approach to how users (or application 
programmers) request output and how fluxes are transformed from the module spectrum to the user-
specified spectra or effects. These latter changes offer improved efficiency through the re-use of 
expensive calculations. 

The primary work that remains on the module architecture upgrade is implementation of the Monte Carlo 
dynamic capability. It is already clear that some kind of shared state will be needed to control correlated 
temporal dynamics between modules. What is not clear is whether the plasma modules, which do not 
currently have Monte Carlo capability, should somehow be included. Another important question is 
whether all modules in a Monte Carlo group must evolve at the same time scale, which is important since 
plasmas evolve on much shorter time scales than radiation belts. In addition to these questions about the 
Monte Carlo implementation, further opportunities for optimization are available in the module 
architecture.  

While the module architecture was initially envisioned to address anomalies in the current AE9/AP9-
IRENE architecture, it also eases extensibility. Once fully implemented, the module architecture should 
make it relatively straightforward to incorporate dynamic solar protons, heavy ions, and new plasma 
populations, such as high-latitude aurora and the plasma sheet. These extensions of AE9/AP9-IRENE will 
expand the set of user problems that can be addressed by the model, and enable a consistent approach to 
radiation and plasma environment specification across more hazards. 
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Appendix A. Analytical Expressions for Energy Integrals 

The expression below can be used to convert from a table of differential fluxes on an energy grid to user-
requested differential, wide, or integral channels. First, we define the implied flux between the energy 
grid points using either semi-log interpolation or power-law interpolation: 

 𝑗𝑗(𝐸𝐸) =

⎩
⎪
⎨

⎪
⎧ 0 𝑗𝑗𝑖𝑖 = 𝑗𝑗𝑖𝑖+1 = 0 no flux
𝑗𝑗𝑖𝑖 + (ln𝐸𝐸 − ln𝐸𝐸𝑖𝑖)

𝑗𝑗𝑖𝑖+1−𝑗𝑗𝑖𝑖
ln𝐸𝐸𝑖𝑖+1−ln𝐸𝐸𝑖𝑖

only one of 𝑗𝑗𝑖𝑖, 𝑗𝑗𝑖𝑖+1 > 0 semi-log

𝑗𝑗𝑖𝑖(𝐸𝐸/𝐸𝐸𝑖𝑖)
ln�𝑗𝑗𝑖𝑖+1/𝑗𝑗𝑖𝑖�
ln�𝐸𝐸𝑖𝑖+1/𝐸𝐸𝑖𝑖� both 𝑗𝑗𝑖𝑖, 𝑗𝑗𝑖𝑖+1 > 0 power-law

 (a) 

The definite integral flux from A to B, when 𝑗𝑗𝑖𝑖 ≤ 𝐴𝐴 < 𝐵𝐵 ≤ 𝑗𝑗𝑖𝑖+1 is given by: 

 ∫ 𝑗𝑗(𝐸𝐸)𝑑𝑑𝑑𝑑𝐵𝐵
𝐴𝐴 = 

 

⎩
⎪
⎨

⎪
⎧

0 no flux
(𝐵𝐵 − 𝐴𝐴)𝑗𝑗𝑖𝑖 + �𝐵𝐵(ln𝐵𝐵 − 1) − 𝐴𝐴(ln𝐴𝐴 − 1) − ln𝐸𝐸𝑖𝑖 (𝐵𝐵 − 𝐴𝐴)� 𝑗𝑗𝑖𝑖+1−𝑗𝑗𝑖𝑖

ln𝐸𝐸𝑖𝑖+1−ln𝐸𝐸𝑖𝑖
semi-log

𝑗𝑗𝑖𝑖𝐸𝐸𝑖𝑖
− ln�𝑗𝑗𝑖𝑖+1/𝑗𝑗𝑖𝑖�
ln�𝐸𝐸𝑖𝑖+1/𝐸𝐸𝑖𝑖�

𝐵𝐵
ln�𝑗𝑗𝑖𝑖+1/𝑗𝑗𝑖𝑖�
ln�𝐸𝐸𝑖𝑖+1/𝐸𝐸𝑖𝑖�

+1
−𝐴𝐴

ln�𝑗𝑗𝑖𝑖+1/𝑗𝑗𝑖𝑖�
ln�𝐸𝐸𝑖𝑖+1/𝐸𝐸𝑖𝑖�

+1

ln�𝑗𝑗𝑖𝑖+1/𝑗𝑗𝑖𝑖�
ln�𝐸𝐸𝑖𝑖+1/𝐸𝐸𝑖𝑖�

+1
power-law

 (b) 

To compute a differential flux at an arbitrary energy E’, simply evaluate Eq. (a) in the appropriate 
interval: 𝐸𝐸𝑖𝑖 ≤ 𝐸𝐸′ < 𝐸𝐸𝑖𝑖+1. To compute an integral flux above E’, use Eq. (b) with the following expression 
starting at the appropriate interval 𝐸𝐸𝑘𝑘 ≤ 𝐸𝐸′ < 𝐸𝐸𝑘𝑘+1: 

 𝐽𝐽>(𝐸𝐸′) = ∫ 𝑗𝑗(𝐸𝐸)𝑑𝑑𝑑𝑑∞
𝐸𝐸′ = ∫ 𝑗𝑗(𝐸𝐸)𝑑𝑑𝑑𝑑𝐸𝐸𝑘𝑘+1

𝐸𝐸′ +∑ ∫ 𝑗𝑗(𝐸𝐸)𝑑𝑑𝑑𝑑𝐸𝐸𝑖𝑖+1
𝐸𝐸𝑖𝑖𝑖𝑖>𝑘𝑘  (c) 

To compute a wide differential channel spanning from E’ to E’’, use Eq. (b) when A and B fall in the 
same interval between energy grid points. Otherwise, use the following expression, where 𝐸𝐸𝑘𝑘 ≤ 𝐸𝐸′ <
𝐸𝐸𝑘𝑘+1 and 𝐸𝐸𝑙𝑙 ≤ 𝐸𝐸′′ < 𝐸𝐸𝑙𝑙+1: 

 ∫ 𝑗𝑗(𝐸𝐸)𝑑𝑑𝑑𝑑𝐸𝐸′′
𝐸𝐸′ = ∫ 𝑗𝑗(𝐸𝐸)𝑑𝑑𝑑𝑑𝐸𝐸𝑘𝑘+1

𝐸𝐸′ +∑ ∫ 𝑗𝑗(𝐸𝐸)𝑑𝑑𝑑𝑑𝐸𝐸𝑖𝑖+1
𝐸𝐸𝑖𝑖

𝑖𝑖<𝑙𝑙
𝑖𝑖>𝑘𝑘 + ∫ 𝑗𝑗(𝐸𝐸)𝑑𝑑𝑑𝑑𝐸𝐸′′

𝐸𝐸𝑙𝑙
 (d) 

After computing the integral, the wide differential channel flux is normalized, dividing the integral by the 
channel energy bandwidth: 

 𝑗𝑗wide(𝐸𝐸) = 1
𝐸𝐸′′−𝐸𝐸′ ∫ 𝑗𝑗(𝐸𝐸)𝑑𝑑𝑑𝑑𝐸𝐸′′

𝐸𝐸′  (e) 
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