
AEROSPACE REPORT NO.
ATR-2016-00932

AE9/AP9 Monte Carlo Upgrades (From v1.2 to v1.3)

February 15, 2016

T. P. O’Brien and Timothy B. Guild

Space Science Applications Laboratory

Physical Sciences Laboratories

Prepared for:

Sr. Vice President
Technology and Laboratory Operations

Authorized by: Engineering and Technology Group

APPROVED FOR PUBLIC RELEASE: distribution unlimited.

 i

Abstract

This report describes upgrades to the AE9/AP9 Monte Carlo machinery that gener-

ates dynamic scenarios. These changes were developed to fix problems with

AE9/AP9 v1.2 in preparation for release v1.3. The problems manifest in two ways:

First, Monte Carlo scenarios of AP9 v1.2 would become unstable, producing unreal-

istically extreme flux values; second, AE9 Monte Carlo simulations did not produce

the same long-term fluence as corresponding simulations in the perturbed mean envi-

ronments. Two changes address numerical uncertainty in a calculation meant to

ensure the Monte Carlo state does not become unstable after many time steps. The

remaining changes ensure that the Monte Carlo time series reproduces the statistical

distributions of the static flux maps much more accurately than in prior versions.

Specifically, these changes ensure that the variance of the Monte Carlo state variables

have the required value of 1 under realistic use cases. Because these shortcomings of

the Monte Carlo machinery went unnoticed through multiple releases of AE9/AP9,

we conclude with recommendations for a set of tests that will catch these kinds of

discrepancies in the future. This document supersedes TOR-2012(1237)-3, and

updates parts of TOR-2014-00294 and TOR-2014-00295.

 ii

Acknowledgments

The authors acknowledges useful discussions with the AE9/AP9 team as well as our

colleagues at The Aerospace Corporation. The authors thank Betty P. Kwan for help

testing AE9/AP9.

 iii

Contents

1. Introduction ... 1

2. The Monte Carlo Formulation—the autoregressive equation .. 2

3. Deriving the AR Coefficients ... 4

 3.1 Generating Spatiotemporal Covariance Matrices

for the Principal Component Amplitudes .. 4

 3.2 Solving for Preliminary AR Coefficients .. 5

 3.3 Refining AR Coefficients for Ideal Properties on Fiducial Time Steps 6

 3.4 Refining AR Coefficients for Realistic Time Interpolation .. 9

4. Initializing the Monte Carlo state ... 12

5. Stability and Accuracy Tests .. 14

6. Recommendations for New Test of the Monte Carlo Machinery ... 16

 6.1 Confirm that Monte Carlo Fluence Nearly Matches Perturbed

Mean Fluence After 10 Years ... 16

 6.2 Confirm That the Statistical Distribution in Monte Carlo Runs

Approximately Matches Observed Statistical Distributions 16

 6.3 Confirm Lag Correlation at Fixed Energy and Location for Electrons

Approximately Matches Observed Values. ... 16

 6.4 Create a Reference Set of Engineering Specifications So That Each New Revision

of the Model Can Be Compared in the Way an Engineer Would See the Results 16

7. References ... 19

Figures

 1. Comparison of Monte Carlo and Perturbed Mean fluences ... 17

 2. Example internal charging specification for a GPS orbit

for different mission durations, comparing v1.2 and v.13 ... 18

 1

1. Introduction

In response to requirements from industry users, the AE9/AP9 model includes the ability to represent

radiation belt dynamics [Ginet et al., 2013]. The model represents dynamics through Monte Carlo

scenarios, which evolve a set of principal component amplitudes (q’s) in time using an autoregressive

(AR) equation. The autoregressive equation for AE9/AP9 is somewhat unusual because it only uses

the past history at certain specific (geophysically significant) time lags [O’Brien, 2012]. The machin-

ery for developing the AR coefficients was designed to produce time series that reflected the statisti-

cal properties of the static AE9/AP9 flux maps. This sparse time lag structure has proved more diffi-

cult to develop and implement correctly than was originally thought. Additionally, the typical user

evaluates AE9/AP9 at times between the Monte Carlo time steps, necessitating time interpolation.

The interpolation affects the statistical properties of the Monte Carlo scenarios and must be accounted

for to produce correct particle flux statistics.

In the remainder of this document, we will review the Monte Carlo formulation, and then provide

updated algorithms for deriving the AR coefficients, verifying them, and initializing the Monte Carlo

state. Finally, we will recommend a set of routine verification and diagnostic tests that could be used

to verify that the Monte Carlo machinery is working as intended before each future model release.

This report supersedes O’Brien [2012], which described the multiple time lags in AE9/AP9. This

report also updates parts of O’Brien [2013a], which described the AE9/AP9 v1.0 runtime algorithms;

and parts of [2013b], which described algorithms for generating the AE9/AP9 v1.0 data tables.

 2

2. The Monte Carlo Formulation—the autoregressive equation

As described in O’Brien [2013a], the Monte Carlo state is represented by a small number (~10) of

principal component amplitudes (q’s). These amplitudes are represented as a state vector �⃗�𝑡 that

evolves in time according to an autoregressive (AR) equation:

 �⃗�𝑡 = ∑ �̆�𝑖�⃗�𝑡−𝜏𝑖

𝑁𝐺
𝑖=1 + �̆��⃗�𝑡 (1)

In this equation, NG is the number of different lags i used. All the i are integer multiples of a fiducial

time spacing t, so that Eq. (1) represents evolution in discrete time. A vector of zero-mean, unit-

variance, mutually independent white noise �⃗�𝑡 is added at each time step to produce random varia-

tions. The �̆�𝑖 and �̆� matrices (the AR coefficients) are derived from observed spatiotemporal correla-

tions. We will return to the derivation of these matrices in the next section. First, however, we must
describe how the q’s relate to the statistical distribution of flux at each grid point in the model.

Equation (1) provides �⃗� at a set of evenly spaced fiducial times, separated by t. In a typical use case,
however, AE9/AP9 must be evaluated at a user-specified list of time tags. We linearly interpolate

from the surrounding model time steps tj and tj+1 to the user’s time tags, 𝑡𝑘
′ :

 �⃗�𝑡𝑘
′ = 𝑐𝑘�⃗�𝑡𝑗

+ (1 − 𝑐𝑘)�⃗�𝑡𝑗+1
, (2)

where

 𝑡𝑗 ≤ 𝑡𝑘
′ < 𝑡𝑗+1 (3)

 𝑐𝑘 =
𝑡𝑗+1−𝑡𝑘

′

𝑡𝑗+1−𝑡𝑗
=

𝑡𝑗+1−𝑡𝑘
′

𝛿𝑡
. (4)

To convert from a state �⃗�𝑡′ to a global flux map involves two transforms. The first transform maps

the principal components onto the model grid in (E,K,) and (E,K,hmin) coordinates defined in Ginet
et al., [2013]. The first transform is a matrix-vector operation:

 𝑧𝑡′ = 𝑄�⃗�𝑡′. (5)

There is one z variable for each (E,K,) and (E,K,hmin) grid point, and the principal component

matrix 𝑄 is derived from the spatial covariance of the fluxes [see O’Brien, 2013b]. Each z is con-

verted to flux using either a Weibull distribution for AE9 or a log-normal distribution for AP9. This

 3

conversion from z to flux assumes that each z is a Gaussian random variable with zero mean and unit

variance. These assumptions become the following constraints:

 〈𝑧𝑡′〉 = 𝑄〈�⃗�𝑡′〉 = 0 (6)

 var 𝑧
𝑡′
(𝑖)

= 〈(𝑧
𝑡′
(𝑖))

2
〉 − (〈𝑧

𝑡′
(𝑖)〉)

2

= ∑ 𝑄𝑖𝑗
2

𝑗 (〈𝑞
𝑡′
(𝑖)𝑞

𝑡′
(𝑗)〉 − 〈𝑞

𝑡′
(𝑖)〉 〈𝑞

𝑡′
(𝑗)〉) = 1 (7)

The angle brackets 〈∙〉 indicate expected value or average. These conditions must be met whether the
average is taken over time or over different scenarios. To meet these constraints, we have elected the

following formulation:

 〈�⃗�𝑡′〉 = 0 (8)

 〈�⃗�𝑡′�⃗�𝑡′
𝑇
〉 = 𝐼 (9)

 ∑ 𝑄𝑖𝑗
2

𝑗 = 1 (10)

Thus, the q’s have zero mean (8) and are independent of each other with unit variance (9), and the

sum of squares of the rows of 𝑄 is 1 for each row (10). The condition on 𝑄 is accounted for by con-

struction in O’Brien [2013b]. The condition on the means of the q’s is satisfied because the white

noise �⃗�𝑡 in (1) has zero mean. Satisfying condition (9) results in a series of assumptions about ck and

constraints on the �̆�𝑖 and �̆� matrices in (1), which are the subject of the next section.

 4

3. Deriving the AR Coefficients

Deriving the AR coefficients involves several steps. First, we generate spatiotemporal covariance

matrices for the principal component amplitudes (q’s) by manipulating observed spatiotemporal

covariances of fluxes. Then we solve a large system of equations for preliminary �̆�𝑖 and �̆� matrices.

We then iteratively refine these matrices to obtain the correct covariance of �⃗�𝑡 (q’s at fiducial time

steps). We then correct for interpolation by making reasonable assumptions about ck.

3.1 Generating Spatiotemporal Covariance Matrices

for the Principal Component Amplitudes

We begin with a set of spatiotemporal covariances computed on a reduced grid. For AE9 and AP9,

this reduced grid is essentially a random subset of points taken from the (E,K,) grid. By reducing
the grid, we are able to avoid having to compute spatiotemporal covariances for the thousands of grid

points at every lag. When computing a spatiotemporal covariance, we start with a time series of daily-
averaged (AE9) or weekly-averaged (AP9) fluxes for each sensor in each bin. Within each bin, for

each sensor, we convert the fluxes into standard Gaussian variables (z’s) by sorting and replacing. If

flux ji represents the ith smallest flux in a bin for a sensor, then we replace that flux with its corre-
sponding z:

 𝑗𝑖 → 𝑧𝑖 = Φ−1 (
𝑖

𝑁+1
). (11)

Here N is the number of points for the sensor in the bin, and Φ−1 is the inverse of the cumulative

distribution function for a Gaussian variable with zero mean and unit variance. (Note this is not the

magnetic coordinate used in the AE9/AP9 grid). We compute the covariance of the z’s at each of
the needed time lags by offsetting the time series for one sensor in one bin relative to the time series
for the other sensor in the other bin. We do not have enough data to compute the lag covariance for

every grid point against every other grid point (even on a reduced grid). Instead, at each lag, we com-

pute a set of covariances by randomly selecting grid points (within the reduced grid) and sensor pairs.
We then use a nearest-neighbors method to fill in the full covariance matrix at the given lag from

these computed covariances [see O’Brien, 2013b]. We denote the resulting matrix

 �̆�𝑀
(𝑖,𝑗)

= cov (𝑧𝑡
(𝑖)

, 𝑧𝑡−𝑀𝛿𝑡
(𝑗)) = 〈𝑧𝑡

(𝑖)
𝑧𝑡−𝑀𝛿𝑡

(𝑗) 〉, (12)

where i,j each span the reduced grid. We then create a reduced �̆�, such that �̆��̆�𝑇 = �̆�0 = Σ̆ is the

spatial covariance (at zero lag) on the reduced grid. We can convert �̆�𝑀 (lag covariance at M time

steps for the z’s) to 𝑅𝑀 (lag covariance at M time steps for the q’s) using:

 5

 𝑅𝑀 = 〈�⃗�𝑡�⃗�𝑡−𝑀𝛿𝑡
𝑇〉 = �̆�−1�̆�𝑀 (�̆�−1)

𝑇

. (13)

We recover the condition 〈�⃗�𝑡�⃗�𝑡
𝑇
〉 = 𝐼:

 〈�⃗�𝑡�⃗�𝑡
𝑇
〉 = 𝑅0 = �̆�−1Σ̆ (�̆�−1)

𝑇

= 𝐼. (14)

So, on the fiducial time steps the zero-lag covariance matrix of the q’s is the identity matrix. That is

why they are designated the principal components of spatial covariance. Next, we will solve for �̆�𝑖

and �̆� matrices on the fiducial time steps using the spatiotemporal covariances 𝑅𝑀.

3.2 Solving for Preliminary AR Coefficients

In this section, we work through a set of equations that we can use to obtain preliminary �̆�𝑖 and �̆�

matrices. If we define the integer Ti = i/t, then right multiply both sides of (1) by �⃗�𝑡−𝑇𝑗𝛿𝑡
𝑇
, and then

take the expected value of both sides, we have:

 〈�⃗�𝑡�⃗�𝑡−𝑇𝑗𝛿𝑡
𝑇
〉 = ∑ �̆�𝑖 〈�⃗�𝑡−𝑇𝑖𝛿𝑡�⃗�𝑡−𝑇𝑗𝛿𝑡

𝑇
〉𝑁𝐺

𝑖=1 + �̆� 〈�⃗�𝑡�⃗�𝑡−𝑇𝑗𝛿𝑡
𝑇
〉. (15)

We note that �⃗�𝑡 has zero mean, and its covariance is the identity matrix, and it is uncorrelated with

itself at all lags, or with any prior �⃗�𝑡. We can, therefore, write the last term as:

 �̆� 〈�⃗�𝑡�⃗�𝑡−𝑇𝑗𝛿𝑡
𝑇
〉 = {

�̆�〈�⃗�𝑡�⃗�𝑡
𝑇〉�̆�𝑇 = �̆��̆�𝑇 𝑇𝑗 = 0

0 otherwise
 (16)

Using (13) and (16), (15) becomes:

 𝑅𝑇𝑗
= ∑ �̆�𝑖𝑅𝑇𝑗−𝑇𝑖

𝑁𝐺
𝑖=1 + {

�̆��̆�𝑇 𝑇𝑗 = 0

0 otherwise
 (17)

We recognize that 𝑅−𝑀=𝑅𝑀
𝑇

 and that 𝑅0 = 𝐼. Using the Tj>0 cases, we can set up a block matrix-

matrix equation for �̆�𝑖 (working in the transposes so as to have the usual form 𝐴𝑋 = 𝐵):

 6

[

𝐼 𝑅𝑇2−𝑇1
𝑅𝑇3−𝑇1

⋯ 𝑅𝑇𝑁𝐺
−𝑇1

𝑅𝑇2−𝑇1

𝑇 𝐼 𝑅𝑇3−𝑇2
⋯ 𝑅𝑇𝑁𝐺

−𝑇2

𝑅𝑇3−𝑇1

𝑇 𝑅𝑇2−𝑇1

𝑇 𝐼 ⋯ 𝑅𝑇𝑁𝐺
−𝑇3

⋮ ⋮ ⋮ ⋱ ⋮
𝑅𝑇𝑁𝐺

−𝑇1

𝑇 𝑅𝑇𝑁𝐺
−𝑇2

𝑇 𝑅𝑇𝑁𝐺
−𝑇3

𝑇 ⋯ 𝐼]

[

�̆�1

𝑇

�̆�2
𝑇

�̆�3
𝑇

⋮
�̆�𝑁𝐺

𝑇
]

=

[

𝑅𝑇1

𝑇

𝑅𝑇2

𝑇

𝑅𝑇3

𝑇

⋮
𝑅𝑇𝑁𝐺

𝑇
]

 (18)

This is a square matrix involving 𝑅𝑇𝑖−𝑇𝑗
 for all combinations of Ti and Tj. For example, if there are

two lags of 1 and 7 steps, we need we need 𝑅𝑀 at M = 1, 7, and 7-1= 6. Thus, up to NG(NG+1)/2 𝑅𝑀

are needed. For a typical case of ~5 lags and ~10 principal components, there are 50 unknowns. Thus

(18) represents a large, but not intractable, equation for a modern computer.

To recover �̆�, we use the Tj=0 case of Eq. (16) and the �̆�𝑖 obtained by solving (18). Thus, we have:

 �̆��̆�𝑇 = 𝐼 − ∑ �̆�𝑖𝑅𝑇𝑖

𝑇𝑁𝐺
𝑖=1 . (19)

We note that (18) can be used to show that �̆��̆�𝑇 is symmetric. We can obtain �̆�, the square root of

�̆��̆�𝑇, by Cholesky factorization or by eigenvalue decomposition. (It is good practice to symmetrize

any floating-point error by performing �̆��̆�𝑇 → [�̆��̆�𝑇 + (�̆��̆�𝑇)
𝑇
] /2 before taking the matrix square

root).

Solving (18) using approximate 𝑅𝑀 can only give us AR coefficients that approximately satisfy the

〈�⃗�𝑡�⃗�𝑡
𝑇
〉 = 𝐼 constraint. In the next section, we will provide an iterative way to adjust �̆�𝑖 and �̆� to

exactly meet 〈�⃗�𝑡�⃗�𝑡
𝑇〉 = 𝐼, while approximating the other 𝑅𝑀.

3.3 Refining AR Coefficients for Ideal Properties on Fiducial Time Steps

In this section, we work through the equations needed to adjust the �̆�𝑖 and �̆� matrices obtained in sec-

tion 3.2 so that they preserve the constraint that 〈�⃗�𝑡�⃗�𝑡
𝑇〉 = 𝐼, i.e., that the principal components (with-

out interpolation) are independent of each other and that each one has unit variance. To begin, we

consider a generic, first-order AR process:

 �⃗�𝑡 = 𝐴�⃗�𝑡−1 + 𝐵�⃗�𝑡. (20)

Again, �⃗�𝑡 is zero mean, unit variance, mutually independent Gaussian white noise. Therefore, �⃗�𝑡 has

zero mean. The AR process is stable if the largest eigenvalue has magnitude less than 1 [see, e.g.,

Neumaier and Schneider, 2001]. We can obtain an expression for the covariance of �⃗�𝑡 by right

multiplying both sides by �⃗�𝑡
𝑇

 and taking the expected value:

 7

 〈�⃗�𝑡�⃗�𝑡
𝑇
〉 = 𝐴〈�⃗�𝑡−1�⃗�𝑡

𝑇
〉 + 𝐵𝐵𝑇 (21)

We have exploited the fact that 〈�⃗�𝑡�⃗�𝑡
𝑇
〉 = 𝐼 and 〈�⃗�𝑡−1�⃗�𝑡

𝑇
〉 = 0. If we right multiply both sides by

�⃗�𝑡−1
𝑇

 and take the expected value, we have:

 〈�⃗�𝑡�⃗�𝑡−1
𝑇
〉 = 𝐴〈�⃗�𝑡−1�⃗�𝑡−1

𝑇
〉. (22)

Letting 𝛴 = 〈�⃗�𝑡�⃗�𝑡
𝑇〉 and R = 〈�⃗�𝑡�⃗�𝑡−1

𝑇〉, we can rewrite (21) and (22) as

 𝛴 = 𝐴R𝑇 + 𝐵𝐵𝑇 (23)

 R = 𝐴𝛴 (24)

In the previous section, we solved the multi-lag counterpart of these equations to obtain the AR coef-

ficients corresponding to 𝐴 and 𝐵. However, if we, instead, have 𝐴 and 𝐵 and we want to compute 𝛴

and 𝑅, then replace (23) with

 𝛴 = 𝐴𝛴A𝑇 + 𝐵𝐵𝑇. (25)

This equation is linear in 𝛴, but it cannot be solved in matrix-matrix form. Instead, we have to

“unwrap” 𝛴 as a vector. First, we rewrite in subscript form:

 𝛴𝑖𝑗 = ∑ A𝑖𝑘 ∑ 𝛴𝑘𝑙A𝑗𝑙𝑙𝑘 + ∑ 𝐵𝑖𝑚𝐵𝑗𝑚𝑚 (26)

Then we rearrange with the help of the Kronecker delta:

 ∑ ∑ (A𝑖𝑘A𝑗𝑙 − 𝛿𝑖𝑘𝛿𝑗𝑙)𝛴𝑘𝑙𝑙𝑘 = −∑ 𝐵𝑖𝑚𝐵𝑗𝑚𝑚 (27)

We can exploit the symmetry of Σ to further reduce this system:

 ∑ ∑ (A𝑖𝑘A𝑗𝑙 − 𝛿𝑖𝑘𝛿𝑗𝑙 + {
A𝑖𝑙A𝑗𝑘 𝑙 < 𝑘

0 𝑙 = 𝑘
})𝛴𝑘𝑙𝑙≤𝑘𝑘 = −∑ 𝐵𝑖𝑚𝐵𝑗𝑚𝑚 (𝑗 ≤ 𝑖) (28)

These two equations represent a linear system in 𝛴𝑘𝑙 for 𝑙 ≤ 𝑘 and 𝑗 ≤ 𝑖, with an exact solution that
can be obtained by treating ij as a single index spanning the constraints and kl as a single index span-

ning the unknowns. This reduces the size of the matrix by almost a factor of 2 in each dimension,

resulting in a faster calculation that uses less memory.

 8

Now, we can recast (1) as a first-order AR process in a variable that includes not just �⃗�𝑡 but also its

history, we have:

 �⃗�𝑡 =

[

�⃗�𝑡

�⃗�𝑡−𝛿𝑡

�⃗�𝑡−2𝛿𝑡

⋮
�⃗�

𝑡−(𝑇𝑁𝐺
−1)𝛿𝑡]

 (29)

 𝐵 =

[

�̆�

0

0

⋮
0]

 (30)

 𝐴 =

[

�̆�1 �̆�2 ⋯ �̆�𝑁𝐺−1 �̆�𝑁𝐺

𝐼 0 ⋯ 0 0

0 𝐼 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝐼 0]

 (31)

 �̆�𝑗 = {
�̆�𝑖 𝑗 ∈ {𝑇𝑖}

0 otherwise
 (32)

This new 𝐴 matrix is very large. For example, for ~10 principal components and lags up to 365 time

steps (i.e., 1 year lag in AE9), there are 3650 rows and columns in 𝐴. Thankfully, 𝐴 and 𝐵 are sparse,

and so do not take up too much memory, nor do matrix operations necessarily take too long.

The covariance of �⃗�𝑡 is given by solving the linear system (28), which is very large with on the order

of a million rows and columns. The resulting covariance is:

 cov �⃗�𝑡 =

[

 〈�⃗�𝑡�⃗�𝑡

𝑇〉 〈�⃗�𝑡�⃗�𝑡−𝛿𝑡
𝑇〉 ⋯ 〈�⃗�𝑡�⃗�𝑡−(𝑇𝑁𝐺

−1)𝛿𝑡

𝑇〉

〈�⃗�𝑡−𝛿𝑡�⃗�𝑡
𝑇〉 〈�⃗�𝑡−𝛿𝑡�⃗�𝑡−𝛿𝑡

𝑇〉 ⋯ 〈�⃗�𝑡−𝛿𝑡�⃗�𝑡−(𝑇𝑁𝐺
−1)𝛿𝑡

𝑇〉

⋮ ⋮ ⋱ ⋮

〈�⃗�
𝑡−(𝑇𝑁𝐺

−1)𝛿𝑡
�⃗�𝑡

𝑇〉 〈�⃗�
𝑡−(𝑇𝑁𝐺

−1)𝛿𝑡
�⃗�𝑡−𝛿𝑡

𝑇〉 ⋯ 〈�⃗�
𝑡−(𝑇𝑁𝐺

−1)𝛿𝑡
�⃗�

𝑡−(𝑇𝑁𝐺
−1)𝛿𝑡

𝑇〉
]

 (33)

 9

We are only concerned with the upper left block (although, when we are done, all blocks on the diag-

onal will be the identity matrix).

Suppose using these manipulations, a given set of �̆�𝑖 and �̆� yields 〈�̆�𝑡�̆�𝑡
𝑇〉 ≈ 𝐼. Then, a transform

exists �⃗�𝑡 = 𝛤�̆�𝑡 such that the transformed variable will have 〈�⃗�𝑡�⃗�𝑡
𝑇〉 = 𝐼. Specifically,

 〈�⃗�𝑡�⃗�𝑡
𝑇
〉 = 𝛤〈�̆�𝑡�̆�𝑡

𝑇〉𝛤𝑇 = 𝐼, (34)

which we solve as:

 𝛤−1𝛤−1𝑇
= 〈�̆�𝑡�̆�𝑡

𝑇〉. (35)

We can then compute Γ−1 as the Cholseky factorization. Applying the transform to (1), we can write:

 𝛤�̆�𝑡 = ∑ �̆�𝑖𝛤�̆�𝑡−𝜏𝑖

𝑁𝐺
𝑖=1 + �̆��⃗�𝑡 . (36)

Rewriting, we have:

 �̆�𝑡 = ∑ 𝛤−1�̆�𝑖𝛤�̆�𝑡−𝜏𝑖

𝑁𝐺
𝑖=1 + 𝛤−1�̆��⃗�𝑡 . (37)

By inspection, we see that the correction transforms that recover 〈�⃗�𝑡�⃗�𝑡
𝑇
〉 = 𝐼 from 〈�̆�𝑡�̆�𝑡

𝑇〉 ≈ 𝐼 are:

 �̆�𝑖 → 𝛤�̆�𝑖𝛤
−1 (38)

 �̆� → 𝛤�̆� (39)

These transforms give Eq. (37) the same form as (1). The transform also changes the lag correlation

structure, but in a small way that is necessary to meet the 〈�⃗�𝑡�⃗�𝑡
𝑇〉 = 𝐼 constraint. We apply these

transforms iteratively, each time recomputing 𝐴, 𝐵, cov �⃗�𝑡, and 𝛤 until the diagonal elements of

〈�̆�𝑡�̆�𝑡
𝑇〉 are within 10–6 of unity.

At this point, we have a refined set of preliminary AR coefficients that give 〈�⃗�𝑡�⃗�𝑡
𝑇〉 = 𝐼 to the desired

precision on the fiducial time tags (without time interpolation) and approximate the spatiotemporal
covariance at multiple time lags. Next, we must address the effect of time interpolation.

3.4

 10

3.4 Refining AR Coefficients for Realistic Time Interpolation

In this section, we concern ourselves with the variance reduction inherent in temporal interpolation.

Specifically, taking the variance of (2), we have:

 〈�⃗�𝑡𝑘
′ �⃗�𝑡𝑘

′
𝑇
〉 = 𝑐𝑘

2 〈�⃗�𝑡𝑗
�⃗�𝑡𝑗

𝑇
〉 + 𝑐𝑘(1 − 𝑐𝑘) 〈�⃗�𝑡𝑗+1

�⃗�𝑡𝑗

𝑇
〉

 +(1 − 𝑐𝑘)𝑐𝑘 〈�⃗�𝑡𝑗
�⃗�𝑡𝑗+1

𝑇〉 + (1 − 𝑐𝑘)
2 〈�⃗�𝑡𝑗+1

�⃗�𝑡𝑗+1

𝑇〉 (40)

This reduces to:

 〈�⃗�𝑡𝑘
′ �⃗�𝑡𝑘

′
𝑇
〉 = (1 − 2𝑐𝑘 + 2𝑐𝑘

2)𝐼 + (𝑐𝑘 − 𝑐𝑘
2) (𝑅1 + 𝑅1

𝑇). (41)

We obtain 𝑅1 from the first off-diagonal block in cov �⃗�𝑡 in Eq. (33). Ideally, over the life of a sce-

nario, 𝑐𝑘 varies almost uniformly between 0 and 1 since the user’s time tags are unrelated to the

Monte Carlo fiducial times. In that case, we can take the average over time (k) to obtain:

 〈�⃗�𝑡𝑘
′ �⃗�𝑡𝑘

′
𝑇
〉 =

2

3
𝐼 +

1

6
[𝑅1 + 𝑅1

𝑇] (42)

In this ideal case, we can again adjust the AR coefficients to obtain 〈�⃗�𝑡𝑘
′ �⃗�𝑡𝑘

′
𝑇〉 = 𝐼. The adjustment is:

 �⃗�′𝑡 = 𝐻�⃗�𝑡 (43)

 𝐺𝑖 = 𝐻�̆�𝑖𝐻
−1 (44)

 𝐶 = 𝐻�̆�, (45)

where

 𝐻 [
2

3
𝐼 +

1

6
(𝑅1 + 𝑅1

𝑇)]𝐻𝑇 = 𝐼, (46)

so that

 𝐻−1𝐻−1𝑇
=

2

3
𝐼 +

1

6
(𝑅1 + 𝑅1

𝑇). (47)

The time evolution equation for �⃗�′𝑡 then resembles (1):

 11

 �⃗�′𝑡 = ∑ 𝐺𝑖�⃗�′𝑡−𝜏𝑖

𝑁𝐺
𝑖=1 + 𝐶�⃗�𝑡. (48)

We recognize that its covariance is

 〈�⃗�′𝑡�⃗�′𝑡
𝑇
〉 = 𝐻𝐻𝑇 .

However, when we interpolate it onto time steps that fall at random offsets relative to the fiducial

time steps, we recover 〈�⃗�′𝑡𝑘
′ �⃗�′𝑡𝑘

′
𝑇
〉 = 𝐻 〈�⃗�𝑡𝑘

′ �⃗�𝑡𝑘
′
𝑇
〉𝐻𝑇 = 𝐼.

The critical assumption when correcting for interpolation is that 𝑐𝑘 is uniformly distributed between 0

and 1. If, in fact, 𝑐𝑘 has some other distribution, then we have:

 〈�⃗�𝑡′�⃗�𝑡′
𝑇
〉 = (1 − 2〈𝑐〉 + 2〈𝑐2〉)𝐼 + (〈𝑐〉 − 〈𝑐2〉) (𝑅1 + 𝑅1

𝑇). (49)

If 〈𝑐〉 = 1/2 and 〈𝑐2〉 = 1/3, then (49) reduces to (42), and the 𝐻 correction is still adequate. How-

ever, there are obvious cases where these conditions on c are not held. For example, for a scenario

that starts at midnight and has a Monte Carlo time step of one day, sampling a geostationary orbit at

1-hour resolution will give ck values of 0, 1/24, 2/24, … 23/24 every day. For such a case, the time

average of ck is, 〈𝑐〉 ~ 0.48 and 〈𝑐2〉~0.31, thus introducing a few percent defect in the variance of
interpolated principal component amplitudes. If, instead, the user’s samples are taken at the half hour,

then ck values of 1/48, 3/48, … 47/48, and the defect is only a few parts in 104.

An error of a few percent in the variance of the principal components can translate into a larger error

for individual fluxes on the model grid. A typical use case involves combining many such fluxes, of

which only a small fraction are likely to be dramatically affected. Still, we can employ one more

strategy to minimize the impact of these pathological (but still likely) user time tags: we can start each
Monte Carlo scenario with a slightly different initial time. If the initial time is offset from the epoch

time by a random fraction of the fiducial time step, then we can guarantee that, at least across sce-

narios, the conditions on 〈𝑐〉 and 〈𝑐2〉 will be met. Further, because the Monte Carlo scenarios are
used as ensembles, the net effect of pathological user time stepping, after mitigation by the random

initial time, is to broaden the distribution of flux and fluence. That broadening is, in effect, conserva-

tive in the typical use of designing to a high percentile (e.g., the 95th percentile). That broadening can
be reduced to an arbitrarily small value by shrinking the user’s time step (e.g., reducing it from1 hour

to a more typical 5 minutes or 10 seconds).

Another strategy to account for time interpolation is to examine the user’s requested time tags at run

time and compute 𝐻 on the fly. This approach is robust if the user is making an entire long run in a

single call to the AE9/AP9 program. However, if the user is splicing together several runs, that may

confound the runtime computation of 𝐻. Therefore, this alternate strategy is not used.

 12

4. Initializing the Monte Carlo state

In this section, we describe the new initialization of the Monte Carlo state for v1.3. In v1.0 through

v1.2, AE9/AP9 scenarios initialized the state fiducial time to the user-supplied epoch minus a condi-

tioning time, usually many months or years. The conditioning time was derived from the largest

eigenvalue of the 𝐴 matrix in Eq. (31). At that time, the stored history of �⃗�𝑡, denoted above by �⃗�𝑡,

was initialized to a set of independent random Gaussian variables with zero mean and unit variance.

By advancing �⃗�𝑡 forward in time over an interval equal to the conditioning time, it was thought that

the resulting history �⃗�𝑡 would evolve to a reasonable state consistent with having evolved through 𝐺𝑖

and 𝐶 for an infinitely long time. In v1.3, we change both how we set the initial fiducial time and how

we initialize the history �⃗�𝑡.

As mentioned in section 3.4, starting with v1.3, we must set the Monte Carlo state’s initial fiducial
time (t0) to a random offset prior to the user-specified epoch (te). We do this by scaling the Monte

Carlo time step using a random variable u sampled uniformly from 0 to 1. We offset the initial time

before the epoch because the Monte Carlo process can only move forward, and the user’s time tags
often start at the epoch time (it is an error for the user to request a time tag before the epoch). The

Monte Carlo state’s initial fiducial time is:

 𝑡0 = 𝑡𝑒 − 𝑢𝛿𝑡 (50)

This offset causes each interpolation weight ck in (4) to be different for each scenario and to be uni-
formly distributed from 0 to 1 across scenarios, as required by (42).

Starting with v1.3, we also replace the conditioning time approach with an initialization based on the

computed covariance of �⃗�𝑡. This change allows us to initialize the entire history of �⃗�𝑡 in one operation

to a realistic �⃗�𝑡. To create a set of Gaussian random variables with zero mean and a known covariance

(cov �⃗�𝑡), one multiplies the square root 𝑊 of the covariance matrix by a vector 𝛿 of independent

Gaussian variables with zero mean and unit variance:

 𝑊𝑊𝑇 = cov �⃗�𝑡 (51)

 �⃗�0 = 𝑊𝛿 (52)

We note that for the calculation of 𝑊, cov �⃗�𝑡 is computed from the final 𝐺𝑖 and 𝐶 values using (33)

after all the corrections are applied. Starting with v1.3, the matrix 𝑊 is included in the AE9/AP9

runtime tables data files.

 13

To ensure that scenarios are reproducible, the random values u and 𝛿 used in the initializations are

tied to each scenario via a scenario-specific seed to the random number generator.

 14

5. Stability and Accuracy Tests

The equations for computing the AR coefficients are set up to produce a Monte Carlo process that is

stable over time and which has the desired mean and variance (after interpolation). As part of the

computation, we perform stability and accuracy tests. We perform these tests inside a loop, where
each time the process fails one of the tests, the loop starts again with an adjustment to the observed

correlation coefficients to taper long lag correlations. Specifically, the loop begins at Eq. (13), and

tapering involves replacing every 𝑅𝑀 with 𝑅𝑀𝛾𝑀, where  starts out as 1 on the first pass through the

loop, and is scaled down by 0.999 each successive retry until the process passes all the tests. This cor-

relation tapering is required because sometimes observed correlations do not decay quickly enough to

give a consistent AR model with only the specified lags. This arises from statistical fluctuations in the
observed correlations and from the fact that we have chosen not to include every consecutive lag in

(1).

We employ two methods to test whether the Monte Carlo process is stable. At various stages in the

development of the 𝐺𝑖 and 𝐶 matrices, we perform a test for the largest eigenvalue of 𝐴 from Eq.

(31). As noted above, the process is stable if the largest eigenvalue of 𝐴 has magnitude less than 1.

Because the radiation belt may have very long lags, we expect eigenvalues of 𝐴 to be near 1. There-

fore, it helps to stabilize the eigenvalue calculation by multiplying 𝐴 by itself several times. If the

leading eigenvalue has magnitude (1 + 𝛿), where |𝛿| ≪ 1, then the leading eigenvalue of 𝐴𝑛 is

(1 + 𝛿)𝑛 ≈ 1 + 𝑛𝛿. That is, the magnitude drifts away from 1 as the power increases. We have

implemented the eigenvalue test by trying successive integer powers of 𝐴 until the eigenvalue algo-

rithm returns an accurate result. If the eigenvalue is larger than 1, then we start the loop again.

Once we have a solution that passes the eigenvalue test, we perform a final stability check by evolv-

ing the principal components through 50 years and 100 scenarios. If two or more scenarios produce

unlikely large values of �⃗�𝑡 at the end of 50 years, the test fails, and we begin the loop again. This

second test ensures that any latent numerical issues in the calculation of the AR coefficients will not

lead to unrealistic Monte Carlo states.

The next two tests are performed on another long simulation, with 1000 time points randomly spaced

over a 50-year period and 100 scenarios. The resulting time series includes time interpolation effects.
From this simulation, we confirm that, over time, 99 times the variance of principal components

across scenarios follows approximately a chi-squared distribution with 99 degrees of freedom. This is

the distribution one expects for the sample variance of 100 samples from a Gaussian variable with

variance 1. For each principal component (there are ~10 of these), we have 1000 time steps of the
sample variance across scenarios. The distribution of these 1000 variances will not exactly follow the

chi-squared distribution because of temporal correlation in the Monte Carlo process. However, we

require that they have a cumulative distribution that never deviates more than 10% from the ideal,
which means they closely approximate the expected chi-squared. Similarly, we compute the variance

 15

over time for each scenario and for each principal component. We confirm that the average across

scenarios of this variance is within 10% of 1 for all principal components. We cannot perform a more
rigorous test because of the temporal correlation effects. If either of these two variance tests fails, we

begin the loop again with more tapering.

 16

6. Recommendations for New Test of the Monte Carlo Machinery

We recommend several new Monte Carlo tests aimed at uncovering any other latent inadequacies in

the Monte Carlo formulation.

6.1 Confirm that Monte Carlo Fluence Nearly Matches Perturbed

Mean Fluence After 10 Years

To accomplish this goal, we will run GEO, GPS, POES, GTO, and HEO orbits for 10 years in 40

Monte Carlo scenarios and in 40 perturbed mean scenarios. We will examine how the 50th, 75th, 90th,
and 95th percentile fluence after 10 years changes between the Monte Carlo (MC) and perturbed mean

(PM) scenarios. We will perform this comparison for integral and differential proton and electron flu-

ence as well as for ionizing dose and equivalent neutron fluence. Specifically, we will plot the ratio of
the fluence percentile from the Monte Carlo runs to the corresponding fluence percentile for the per-

turbed mean runs as a function of particle energy or depth of shielding. Figure 1 shows an example

comparison for a GPS orbit. For this example, the largest difference between any percentile in the

MC versus PM calculation is about 20%. Across all five sample orbits, the largest deviation is about
30%. These differences are acceptable: they are smaller than the error in the percentiles due to using

only 40 scenarios, and it can take longer than 10 years for the dynamics to truly average out in the

MC scenarios.

6.2 Confirm That the Statistical Distribution in Monte Carlo Runs
Approximately Matches Observed Statistical Distributions

Using the same set of reference orbits, we will make quantile-quantile (QQ) plots of the statistical

distribution of each scenario against the observed statistical distribution. We will use HEO and GEO

data as the reference for this test.

6.3 Confirm Lag Correlation at Fixed Energy and Location for Electrons

Approximately Matches Observed Values

To perform this test, we will use HEO and GEO data. The HEO data will be binned into daily aver-

ages in  bins. The GEO data will be simple daily averages.

6.4 Create a Reference Set of Engineering Specifications So That Each New
Revision of the Model Can Be Compared in the Way an Engineer Would

See the Results

For each of the five reference orbits listed above in 6.1, we will create the following specifications

using the 10-year Monte Carlo runs:

 1, 5, 10-year 95th percentile dose vs depth

 1, 5, 10-year 95th percentile integral proton fluence

 1, 5, 10-year 95th percentile integral electron fluence

 1, 5, 10-year 95th percentile integral electron 24-hour worst-case boxcar average

 1, 5, 10-year 95th percentile integral proton 1-minute worst-case boxcar average

 17


Figure 1. Comparison of Monte Carlo and Perturbed Mean fluences. Top: Monte Carlo

(MC) and perturbed mean (PM) fluence spectra for 10 years in a GPS orbit at
different confidence levels. Bottom: Ratio of MC to PM fluence at different
confidence levels versus energy.

 18

The first three of these specifications address cumulative effects, like total dose, displacement dam-

age, or fatal single-event effects. The fourth addresses internal charging, and the fifth addresses sin-

gle-event effects. Each test consists of three curves that can be combined into one plot, and the same

curves for the most recent prior AE9/AP9 release can also be made. Figure 2 shows an example inter-

nal charging specification for a GPS orbit. The improved Monte Carlo simulations in v1.3 produce a

30–100% higher worst-case internal charging flux for a 10-year mission, depending on energy, evi-

dence that the older version was missing some of the flux variance.

Together, these tests will help us identify any shortcomings of the Monte Carlo approach, and they

will better prepare us to anticipate concerns from engineers about changes between versions of the

model.

Figure 2. Example internal charging specification for a GPS orbit for different mission

durations, comparing v1.2 and v.13

 19

7. References

Ginet, G. P. et al., “AE9, AP9 and SPM: New models for specifying the trapped energetic particle and

space plasma environment,” Space Sci. Rev., doi:10.1007/s11214-013-9964-y, 2013

Neumaier, A. and T. Schneider, “Estimation of parameters and eigenmodes of multivariate auto-

regressive models,” ACM Trans. Math. Soft., 27(1), 27-57, 2001.

O’Brien, T. P., Adding Multiple Time Lags to AE9/AP9 V1.0, TOR-2012(1237)-3, The Aerospace

Corporation, El Segundo, CA, August 10, 2012 (corrected June 2015).

O’Brien, T. P., AE9/AP9/SPM V1.0 Runtime Algorithms, TOR-2014-00294, The Aerospace Corpora-

tion, El Segundo, CA, December 30, 2013a.

O’Brien, T. P., Generation of AE9/AP9/SPM V1.0 Runtime Tables, TOR-2014-00295, The Aerospace

Corporation, El Segundo, CA, December 30, 2013b.

