SCATHA/SC3 DATA PROCESSING AND CROSS-CALIBRATION WITH LANL-GEO/CPA FOR AE9 DEVELOPMENT Yi-Jiun Su Caton Christopher Roth **18 February 2014** **Technical Report** APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. AIR FORCE RESEARCH LABORATORY Space Vehicles Directorate 3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 #### **DTIC COPY** ## NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them. This report was cleared for public release by the 377 ABW Public Affairs Office and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil). AFRL-RV-PS-TR-2014-0015 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. | //SIGNED// | //SIGNED// | |-----------------------------|-----------------------------------------| | Adrian Wheelock | Edward J. Masterson, Colonel, USAF | | Program Manager/ AFRL/RVBXR | Chief. Battlespace Environment Division | This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government's approval or disapproval of its ideas or findings. ## Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 01 Jun 2011 to 28 Feb 2012 18-02-2014 **Technical Report** 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER SCATHA/SC3 DATA PROCESSING AND CROSS-CALIBRATION WITH LANL-GEO/CPA FOR AE9 DEVELOPMENT 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 63401F 5d. PROJECT NUMBER 6. AUTHOR(S) Yi-Jiun Su Caton and Christopher Roth 5021 5e. TASK NUMBER PPM00004260 5f. WORK UNIT NUMBER EF004414 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Air Force Research Laboratory Space Vehicles Directorate AFRL-RV-PS-TR-2014-0015 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) AFRL/RVBXR 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. (377ABW-2013-1041 dtd 9 Dec 2013) 13. SUPPLEMENTARY NOTES 14. ABSTRACT This report summarizes processing and cross calibration of electron data from the Spacecraft Charging AT High Altitudes (SCATHA) SC3 spectrometer for use in the AE9 radiation belt model. The processed and cleaned data were cross calibrated with four LANL GEO satellites. Identification of conjunctions and results for cross calibration factors and residual errors are provided. The data used in this report are from 1979 to 1989. 15. SUBJECT TERMS 17. LIMITATION Unlimited OF ABSTRACT 18. NUMBER 52 OF PAGES SCATHA, SC3, radiation belts, electron, cross-calibration, GEO, AE9/AP9. c. THIS PAGE Unclassified 16. SECURITY CLASSIFICATION OF: b. ABSTRACT Unclassified a. REPORT Unclassified 19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (include area Adrian Wheelock ## **Table of Contents** | 1. | . I | NTRODUCTION | .1 | |----|------|--------------------------------------|----| | | | ACKGROUND | | | | | METHODS, ASSUMPTIONS, AND PROCEDURES | | | | 3.1. | Data Processing | .1 | | | | Data Cleaning | | | | 3.3. | Data Used in Cross-Calibration | .3 | | | 3.4. | Conjunctions Used | .4 | | 4. | R | ESULTS AND DISCUSSION | .4 | | 5. | . C | ONCLUSIONS | .7 | | | R | EFERENCES | .8 | | | A | PPENDIX: ADDITIONAL FIGURES | g | # **List of Figures** | 1. | Data cleaning plots | |----|-------------------------------------------------------------------------------------| | | | | | | | | | | | | | | | | | | | | | | | List of Tables | | 1. | Information for the 24 energy channels of SCATHA/SC3 | | 2. | Center energies of energy channels (MeV) | | 3. | Conjunction criteria | | 4. | Conjunction events | | 5. | Cross calibration results for SCATHA and LANL 1981-025 (6.59 $\leq L_m \leq 7.20)5$ | | 6. | Cross calibration results for SCATHA and LANL 1982-019 (6.74 $\leq L_m \leq 7.32)5$ | | 7. | Cross calibration results for SCATHA and LANL 1984-037 (6.60 $\leq L_m \leq 7.11)6$ | | 8. | Cross calibration results for SCATHA and LANL 1984-129 ($6.54 \le L_m \le 6.99$)6 | #### 1. INTRODUCTION This report summarizes processing and cross calibration of electron data from the Spacecraft Charging AT High Altitudes (SCATHA) SC3 spectrometer for use in the AE9 radiation belt model. The processed and cleaned data were cross calibrated with four GEO satellites (1981-025, 1982-019, 1984-037, and 1984-129). Identification of conjunctions and results for cross calibration factors and residual errors are provided. The data used in this report are from 1979 to 1989. ## 2. BACKGROUND AE9/AP9/SPM is a new model of the trapped radiation and plasma near-Earth environment for use in satellite design. In the case of the energetic electron component, AE9, over 16 data sets were used to develop the model. These data sets were processed, cleaned, and cross-calibrated to provide a consistent basis for merging into the final flux maps. This document describes the process as applied to the SCATHA/SC3 data set. As a joint Air Force/NASA satellite mission, the Spacecraft Charging AT High Altitudes (SCATHA) was launched on 30 January 1979 as into a highly elliptical transfer orbit having an apogee of 43,183km, a perigee of 176 km, and an inclination of 27.3°. On 2 February 1979, SCATHA was inserted into its final, near-synchronous Earth orbit at 7.9° inclination with apogee at 43,192 km (\sim 7.8 R_E), perigee at 27,517 km (\sim 5.3 R_E), and period of 23.597 hours [1, 2]. This mission lasted about 11 years. The SC3 spectrometer on board SCATHA measured the fluxes and pitch-angle (PA) distributions of energetic electrons in the energy range 47 keV to 5 MeV. Information on the 24 energy channels is listed in Table 1 [1]. The center energy is in the unit of keV, while the geometric factor term $(G_F\Delta E)^{-1}$ is in units of cm⁻² sr⁻¹ keV⁻¹. ## 3. METHODS, ASSUMPTIONS, AND PROCEDURES ## 3.1 Data Processing The SCATHA data were recovered in late 1990s by the Aerospace Corporation and a different table of geometric factor parameters was provided by Fennell et al. [3]. However, the geometric factors by Fennel et al. [3] are only available for 12 low energy channels; hence, we have chosen to adopt parameters provided by Reagan et al. [1] to convert count rates to differential energy fluxes (j) with an equation $$j=counts/(\Delta t G_F \Delta E)$$ (1) for both low and high energy channels. Table 1: Information for the 24 energy channels of SCATHA/SC3. | | Low Ener | gy Mode | | High Energy Mode | | | | |----------|----------|---------|------------------------------------|------------------|-----------|-------|------------------------------------| | Center E | Energy | ΔE | $(G_F\Delta E)^{-1}$ | Center E | Energy | ΔE | $(G_F\Delta E)^{-1}$ | | (keV) | range | (keV) | (cm ⁻² sr ⁻¹ | (keV) | range | (keV) | (cm ⁻² sr ⁻¹ | | | (keV) | | keV ⁻¹) | | (keV) | | keV ⁻¹) | | 56.7 | 47-66 | 19 | 19.9 | 448.5 | 260-630 | 370 | 1.74 | | 76.7 | 66-87 | 21 | 18.7 | 830 | 630-1030 | 400 | 1.05 | | 97.5 | 87-108 | 21 | 18.3 | 1222.5 | 1030-1420 | 390 | 1.08 | | 118.5 | 108-129 | 21 | 18.3 | 1616.5 | 1420-1810 | 390 | 1.14 | | 139.5 | 129-150 | 21 | 18.3 | 2011 | 1810-2210 | 400 | 1.22 | | 160.5 | 150-171 | 21 | 18.3 | 2405.5 | 2210-2600 | 390 | 1.26 | | 181.5 | 171-192 | 21 | 18.6 | 2800 | 2600-3000 | 400 | 1.38 | | 203 | 192-214 | 22 | 17.9 | 3195 | 3000-3390 | 390 | 1.48 | | 224.5 | 214-235 | 21 | 19.5 | 3590 | 3390-3790 | 400 | 1.80 | | 245.5 | 235-256 | 21 | 22.2 | 3904 | 3790-4180 | 390 | 2.14 | | 267 | 256-278 | 22 | 25.5 | 4378 | 4180-4580 | 400 | 3.25 | | 288.5 | 278-299 | 21 | 32.9 | 4772.5 | 4580-4970 | 390 | 3.68 | The electron count rate data used in AE9/AP9 were extracted from high-resolution Common Data Format (CDF) files provided by the Aerospace Corporation. The original time resolution of the SC3 data is 0.496 sec. In order to reduce the SCATHA/SC3 data set to a manageable size, measured count rates have been averaged over 5-min intervals in 9 local pitch angle bins from 0° to 90°. Each pitch angle bin has a resolution of 10°. The SCATHA satellite ephemeris information contained in the associated "summary CDF" files was determined to be very poor quality and contained many unphysical position shifts. A database of SCATHA satellite orbit two-line element (TLE) sets was obtained from the Aerospace Corporation. The 'Lokangle' propagator was used to generate a replacement set of ephemeris information from a filtered version of this TLE database; many TLE entries that were deemed suspicious, or those that caused unphysical position shifts, were removed. ## 3.2 Data Cleaning Three types of data cleaning processes were performed (1) to correlate count rates from neighboring energy channels (Fig. 1a-b); (2) to plot count rates for one energy channel against itself at a 5-min time lag (Fig. 1c); and (3) to use the median values to filter out spurious high count rates. Examples of cleaning methods are shown in Figure 1. Suspicious points outside a selected diagonal range marked by two black lines (Fig. 1a and 1c) were flagged and were not included in the product. Energy channel 13 did not function properly after the first two years of operation as seen in Figure 1b, hence, data from this energy channel (highlighted red in Table 1) has been excluded in the product. Finally, electron fluxes of 23 energy channels with time and pitch angle resolution of 5 min and 10° [i.e., j(nE=23, nPA=9, Δt =5 min)] along with corresponding L_m , K, ϕ , and HMIN were generated to be used in the AE9/AP9 product. Figure 1. Data cleaning plots: (a) Correlation between two adjacent energy channels, 1 and 2, for pitch angles 80°-90°. Data points outside the two diagonal solid black lines were excluded in our statistical study. The color bar on the right of each panel indicates the year of mission. (b) Correlation between energy channels 13 and 14. This panel and other information (not shown) indicate that the energy channel 13 does not provide accurate count rate measurements for the majority period of the mission. (c) A plot of energy channel 1 against itself at a 5-min time lag. Again, data points above the upper black line and below the lower line were excluded in our statistics. #### 3.3 Data Used in Cross-Calibration For use in AE9, SCATHA data were cross-calibrated with LANL GEO/CPA data. The LANL GEO data are spin-averaged omni-directional CPA data, at 1 min intervals, from satellites 1981-025, 1982-019, 1984-037, and 1984-129. The CPA instrument has 11 electron energy channels in the range of 0.04-1.6 MeV. The SC3 instrument on SCATHA has 24 electron energy channels from 0.05-5 MeV. In this cross calibration, SCATHA data are averaged over pitch angles with 5 min time resolution. The energy channels used here are highlighted in grey in Table 2. The log fluxes of LANL channels have been linear interpolated based on the SCATHA/SC3 log center energies. | | 1 | 1 | | | | ı | | | ı | ı | | | |---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Channel | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | SCATHA | 0.057 | 0.077 | 0.098 | 0.119 | 0.140 | 0.161 | 0.182 | 0.203 | 0.225 | 0.246 | 0.267 | 0.289 | | LANL | 0.037 | 0.054 | 0.079 | 0.115 | 0.167 | 0.245 | 0.346 | 0.488 | 0.735 | 1.123 | 1.673 | - | | Channel | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | SCATHA | 0.449 | 0.830 | 1.223 | 1.617 | 2.011 | 2.406 | 2.800 | 3.195 | 3.590 | 3.904 | 4.378 | 4.773 | **Table 2: Center energies of energy channels (MeV)** ## 3.4 Conjunctions Used The conjunction criteria, shown in Table 3, are based on those of Friedel et al. [4] but modified for the case of SCATHA-GEO conjunctions. It should be noted that some criteria used in other AE9 cross-calibrations are not used here. No restriction of $L_{\rm m} < 6.5$ is used because all conjunction events were found when $L_{\rm m}$ (PA=90°) is greater than 6.5. No restriction on Kp is used because the conjunction events dramatically decrease with a restriction Kp < 2 for the last 48 hrs. The number of conjunction points for the SCATHA-GEO pairs are listed on Table 4. Each of SCATHA points has been reproduced to match the GEO resolution in the cross calibration. **Table 3: Conjunction criteria** | Quantity | Criterion | |----------|-----------------| | ΔLm | < 0.1 | | Δ (B/Bo) | < 0.1 | | ΔUT (hr) | < 3 | | MLT | 4-8 or 16-20 LT | **Table 4: Conjunction events** | Satellite Pair | SCATHA | SCATHA | SCATHA | SCATHA | |------------------------------------|----------|----------|----------|----------| | | 1981-025 | 1982-019 | 1984-037 | 1984-129 | | # SCATHA points (5 min resolution) | 611 | 1066 | 472 | 517 | | # GEO points (1 min resolution) | 3434 | 6041 | 2479 | 2940 | ## 4. RESULTS AND DISCUSSION Cross-calibration statistics were obtained for SC3 channels 1-17, representing the range of overlap with CPA channel energies. Tables 5-8 present results for comparisons of SCATHA to each of four GEO satellites, including number of conjunction points N, mean and median ratios, correlation coefficient, and root-mean-squared-error (RMSE). It should be noted that Energy Channel 13 is bad after 1981, hence, not many data points for statistics (see Table 4, highlighted grey, and the top panel of Page 4). We recommend ignoring Channel 13 entirely. Table 5. Cross calibration results for SCATHA and LANL 1981-025 (6.59 $\leq L_m \leq 7.20)$ | Channel | E (MeV) | N | Mean (A) | Median (R) | Corr. Coef. | RMSE(dlnj) | |---------|---------|------|----------|------------|-------------|------------| | 1 | 0.0567 | 3413 | 0.4495 | 0.3067 | 0.308 | 0.8348 | | 2 | 0.0767 | 3413 | 0.5700 | 0.4133 | 0.296 | 0.7989 | | 3 | 0.0975 | 3407 | 0.6634 | 0.5102 | 0.351 | 0.7531 | | 4 | 0.1185 | 3406 | 0.7558 | 0.5387 | 0.378 | 0.7681 | | 5 | 0.1395 | 3406 | 0.8333 | 0.5874 | 0.422 | 0.7293 | | 6 | 0.1605 | 3406 | 0.8550 | 0.5930 | 0.444 | 0.7216 | | 7 | 0.1815 | 3406 | 0.9040 | 0.6430 | 0.446 | 0.7191 | | 8 | 0.2030 | 3406 | 0.8462 | 0.6192 | 0.446 | 0.7163 | | 9 | 0.2245 | 3406 | 0.8888 | 0.6651 | 0.452 | 0.7157 | | 10 | 0.2455 | 3427 | 0.8953 | 0.6768 | 0.480 | 0.7194 | | 11 | 0.2670 | 3424 | 0.7971 | 0.5926 | 0.494 | 0.7239 | | 12 | 0.2885 | 3415 | 0.7805 | 0.5768 | 0.496 | 0.7202 | | 13 | 0.4485 | 172 | 1.6941 | 1.0449 | 0.912 | 0.7976 | | 14 | 0.8300 | 3272 | 0.7907 | 0.6875 | 0.755 | 0.7219 | | 15 | 1.2225 | 3003 | 0.8246 | 0.6669 | 0.820 | 0.6347 | | 16 | 1.6165 | 2226 | 0.8275 | 0.5795 | 0.757 | 0.6997 | | 17 | 2.0110 | 1397 | 0.5027 | 0.4060 | 0.605 | 0.6389 | Table 6. Cross calibration results for SCATHA and LANL 1982-019 (6.74 $\leq L_m \leq 7.32)$ | Channel | E (MeV) | N | Mean (A) | Median (R) | Corr. Coef. | RMSE(dlnj) | |---------|---------|------|----------|------------|-------------|------------| | 1 | 0.0567 | 5919 | 1.9045 | 0.4066 | 0.338 | 1.0629 | | 2 | 0.0767 | 5911 | 1.4532 | 0.4430 | 0.399 | 0.9959 | | 3 | 0.0975 | 5955 | 1.3187 | 0.5478 | 0.469 | 0.9398 | | 4 | 0.1185 | 6013 | 4.0138 | 0.6306 | 0.396 | 1.1181 | | 5 | 0.1395 | 6009 | 4.4458 | 0.7013 | 0.442 | 1.1050 | | 6 | 0.1605 | 5950 | 4.7089 | 0.7132 | 0.430 | 1.0990 | | 7 | 0.1815 | 5945 | 4.7711 | 0.8463 | 0.459 | 1.0749 | | 8 | 0.2030 | 5927 | 4.1268 | 0.8817 | 0.490 | 1.0448 | | 9 | 0.2245 | 5903 | 4.1348 | 1.0323 | 0.499 | 1.0294 | | 10 | 0.2455 | 5886 | 4.0536 | 1.1405 | 0.509 | 1.0176 | | 11 | 0.2670 | 5799 | 3.5214 | 1.0649 | 0.526 | 0.9751 | | 12 | 0.2885 | 5695 | 3.4550 | 1.0722 | 0.544 | 0.9513 | | 14 | 0.8300 | 5568 | 2.5265 | 1.3409 | 0.726 | 0.9693 | | 15 | 1.2225 | 3974 | 3.9607 | 1.6013 | 0.702 | 1.0186 | | 16 | 1.6165 | 2403 | 5.2497 | 2.0774 | 0.637 | 1.1173 | | 17 | 2.0110 | 1228 | 8.5467 | 2.2600 | 0.523 | 1.1217 | Table 7. Cross calibration results for SCATHA and LANL 1984-037 (6.60 $\leq L_m \leq 7.11)$ | Channel | E (MeV) | N | Mean (A) | Median (R) | Corr. Coef. | RMSE(dlnj) | |---------|---------|------|----------|------------|-------------|------------| | 1 | 0.0567 | 2345 | 0.5621 | 0.3169 | 0.122 | 1.1255 | | 2 | 0.0767 | 2339 | 0.5273 | 0.3592 | 0.195 | 1.0172 | | 3 | 0.0975 | 2333 | 0.6403 | 0.5136 | 0.280 | 0.9840 | | 4 | 0.1185 | 2333 | 0.7664 | 0.5678 | 0.311 | 1.0095 | | 5 | 0.1395 | 2327 | 0.9547 | 0.6019 | 0.357 | 1.0116 | | 6 | 0.1605 | 2295 | 1.1523 | 0.6321 | 0.452 | 0.9338 | | 7 | 0.1815 | 2289 | 1.2410 | 0.6887 | 0.490 | 0.9210 | | 8 | 0.2030 | 2271 | 1.1222 | 0.6606 | 0.462 | 0.9151 | | 9 | 0.2245 | 2234 | 1.1576 | 0.6972 | 0.487 | 0.8430 | | 10 | 0.2455 | 2234 | 1.1377 | 0.6912 | 0.492 | 0.8512 | | 11 | 0.2670 | 2228 | 1.1195 | 0.6570 | 0.485 | 0.8781 | | 12 | 0.2885 | 2223 | 1.2054 | 0.6855 | 0.486 | 0.9059 | | 14 | 0.8300 | 2197 | 3.8774 | 0.9329 | 0.674 | 1.2923 | | 15 | 1.2225 | 1571 | 3.7034 | 1.2076 | 0.797 | 1.0415 | | 16 | 1.6165 | 1093 | 7.6871 | 1.2187 | 0.610 | 1.3271 | | 17 | 2.0110 | 917 | 11.8299 | 1.0811 | 0.521 | 1.5262 | Table 8. Cross calibration results for SCATHA and LANL 1984-129 (6.54 $\leq L_m \leq 6.99)$ | Channel | E (MeV) | N | Mean (A) | Median (R) | Corr. Coef. | RMSE(dlnj) | |---------|---------|------|----------|------------|-------------|------------| | 1 | 0.0567 | 2940 | 0.3476 | 0.2364 | 0.250 | 0.9520 | | 2 | 0.0767 | 2940 | 0.3593 | 0.2587 | 0.390 | 0.7829 | | 3 | 0.0975 | 2940 | 0.4587 | 0.3690 | 0.497 | 0.6858 | | 4 | 0.1185 | 2940 | 0.5349 | 0.4542 | 0.558 | 0.6599 | | 5 | 0.1395 | 2940 | 0.5444 | 0.4891 | 0.603 | 0.6356 | | 6 | 0.1605 | 2940 | 0.5258 | 0.4712 | 0.627 | 0.6252 | | 7 | 0.1815 | 2940 | 0.5987 | 0.5569 | 0.679 | 0.6025 | | 8 | 0.2030 | 2940 | 0.6433 | 0.6116 | 0.729 | 0.5742 | | 9 | 0.2245 | 2940 | 0.7745 | 0.7563 | 0.763 | 0.5662 | | 10 | 0.2455 | 2940 | 0.8925 | 0.8749 | 0.777 | 0.5687 | | 11 | 0.2670 | 2940 | 0.8258 | 0.7930 | 0.789 | 0.5735 | | 12 | 0.2885 | 2940 | 0.8684 | 0.7917 | 0.785 | 0.5889 | | 14 | 0.8300 | 2781 | 1.4866 | 1.0224 | 0.816 | 0.6787 | | 15 | 1.2225 | 2568 | 1.6599 | 1.1826 | 0.790 | 0.6933 | | 16 | 1.6165 | 2092 | 1.5721 | 1.0873 | 0.490 | 0.6947 | | 17 | 2.0110 | 1914 | 1.3159 | 0.9226 | 0.352 | 0.6967 | ## 5. CONCLUSIONS Electron data from the SC3 instrument on the SCATHA satellite were processed and cleaned for use in AE9. Cross-calibration was performed against CPA data from four LANL-GEO satellites: 1981-025, 1982-019, 1984-037, and 1984-129. This provided calibration statistics for channels 1-12 and 14-17 of SC3, the range of overlap with CPA channel energies. As the SC3 channel 13 data is bad after 1981, insufficient statistics were available for cross-calibration and we recommend not using this channel. ## REFERENCES - [1] Reagan, J. B., R. W. Nightingale, E. E. Gaines, W. L. Imhof, and E. G. Stassinopoulos, Outer zone energetic electron spectral measurements, *Proceedings of the AIAA 18th Aerospace Sciences Meeting*, AIAA-80 0390, Pasadena, CA, 1981. - [2] Fennell, J. F., Description of P78-2 (SCATHA) satellite and experiments, in *The IMS Source Book*, ed. by Russell and Southwood, pp. 65-81, American Geophysical Union, Washington, D.C., 1982. - [3] Fennell, J. F., G. M. Boyd, M. T. Redding, and M. C. McNab, Data recovery from SCATHA satellite, *Aerospace Report* No. ATR-97(7400)-1, 1997. - [4] Friedel, R. H. W., S. Boudarie, and T. E. Cayton, Intercalibration of magnetospheric energetic electron data, *Space Weather*, 3:S09B04, doi:10.1029/2005SW000153, 2005. ## APPENDIX: ADDITIONAL FIGURES The following additional figures show calibration results for each SCATHA-GEO satellite pairing and scatter plots of each channel for each pairing. Figures A1-A4 show ratios of SCATHA fluxes to GEO fluxes as a function of energy, including: mean (black line with solid circles); median (red line with solid circles); 32nd & 68th percentiles (blue lines); and 5th and 95th percentiles (light blue lines). The remaining figures each show SCATHA fluxes vs. GEO fluxes for a single pairing and single channel: - Figures A5-A21: Cross calibration between SCATHA and 1981-025 - Figures A22-A37: Cross calibration between SCATHA and 1982-019 - Figures A38-A53: Cross calibration between SCATHA and 1984-037 - Figures A52-A69: Cross calibration between SCATHA and 1984-129 Figure A1: Cross-calibration results, SCATHA to 1981-025 Figure A2: Cross-calibration results, SCATHA to 1982-019 Figure A3: Cross-calibration results, SCATHA to 1984-037 Figure A4: Cross-calibration results, SCATHA to 1984-129 Figure A5: Cross-calibration results, SCATHA vs. 1981-025, E=56.7 keV Figure A6: Cross-calibration results, SCATHA vs. 1981-025, E=76.7 keV Figure A7: Cross-calibration results, SCATHA vs. 1981-025, E=97.5 keV Figure A8: Cross-calibration results, SCATHA vs. 1981-025, E=118.5 keV Figure A9: Cross-calibration results, SCATHA vs. 1981-025, E=139.5 keV Figure A10: Cross-calibration results, SCATHA vs. 1981-025, E=160.5 keV Figure A11: Cross-calibration results, SCATHA vs. 1981-025, E=181.5 keV Figure A12: Cross-calibration results, SCATHA vs. 1981-025, E=203 keV Figure A13: Cross-calibration results, SCATHA vs. 1981-025, E=224.5 keV Figure A14: Cross-calibration results, SCATHA vs. 1981-025, E=245.5 keV Figure A15: Cross-calibration results, SCATHA vs. 1981-025, E=267 keV Figure A16: Cross-calibration results, SCATHA vs. 1981-025, E=288.5 keV Figure A17: Cross-calibration results, SCATHA vs. 1981-025, E=448.5 keV Figure A18: Cross-calibration results, SCATHA vs. 1981-025, E=830 keV Figure A19: Cross-calibration results, SCATHA vs. 1981-025, E=1222.5 keV Figure A20: Cross-calibration results, SCATHA vs. 1981-025, E=1616.5 keV Figure A21: Cross-calibration results, SCATHA vs. 1981-025, E=2011 keV Figure A22: Cross-calibration results, SCATHA vs. 1982-019, E=56.7 keV Figure A23: Cross-calibration results, SCATHA vs. 1982-019, E=76.7 keV Figure A24: Cross-calibration results, SCATHA vs. 1982-019, E=97.5 keV Figure A25: Cross-calibration results, SCATHA vs. 1982-019, E=118.5 keV Figure A26: Cross-calibration results, SCATHA vs. 1982-019, E=139.5 keV Figure A27: Cross-calibration results, SCATHA vs. 1982-019, E=160.5 keV Figure A28: Cross-calibration results, SCATHA vs. 1982-019, E=181.5 keV Figure A29: Cross-calibration results, SCATHA vs. 1982-019, E=203 keV Figure A30: Cross-calibration results, SCATHA vs. 1982-019, E=224.5 keV Figure A31: Cross-calibration results, SCATHA vs. 1982-019, E=245.5 keV Figure A32: Cross-calibration results, SCATHA vs. 1982-019, E=267 keV Figure A33: Cross-calibration results, SCATHA vs. 1982-019, E=288.5 keV Figure A34: Cross-calibration results, SCATHA vs. 1982-019, E=830 keV Figure A35: Cross-calibration results, SCATHA vs. 1982-019, E=1222.5 keV Figure A36: Cross-calibration results, SCATHA vs. 1982-019, E=1616.5 keV Figure A37: Cross-calibration results, SCATHA vs. 1982-019, E=2011 keV Figure A38: Cross-calibration results, SCATHA vs. 1984-037, E=56.7 keV Figure A39: Cross-calibration results, SCATHA vs. 1984-037, E=76.7 keV Figure A40: Cross-calibration results, SCATHA vs. 1984-037, E=97.5 keV Figure A41: Cross-calibration results, SCATHA vs. 1984-037, E=118.5 keV Figure A42: Cross-calibration results, SCATHA vs. 1984-037, E=139.5 keV Figure A43: Cross-calibration results, SCATHA vs. 1984-037, E=160.5 keV Figure A44: Cross-calibration results, SCATHA vs. 1984-037, E=181.5 keV Figure A45: Cross-calibration results, SCATHA vs. 1984-037, E=203 keV Figure A46: Cross-calibration results, SCATHA vs. 1984-037, E=224.5 keV Figure A47: Cross-calibration results, SCATHA vs. 1984-037, E=245.5 keV Figure A48: Cross-calibration results, SCATHA vs. 1984-037, E=267 keV Figure A49: Cross-calibration results, SCATHA vs. 1984-037, E=288.5 keV Figure A50: Cross-calibration results, SCATHA vs. 1984-037, E=830 keV Figure A51: Cross-calibration results, SCATHA vs. 1984-037, E=1222.5keV Figure A52: Cross-calibration results, SCATHA vs. 1984-037, E=1616.5 keV Figure A53: Cross-calibration results, SCATHA vs. 1984-037, E=2011 keV Figure A54: Cross-calibration results, SCATHA vs. 1984-129, E=56.7 keV Figure A55: Cross-calibration results, SCATHA vs. 1984-129, E=76.7 keV Figure A56: Cross-calibration results, SCATHA vs. 1984-129, E=97.5 keV Figure A57: Cross-calibration results, SCATHA vs. 1984-129, E=118.5 keV Figure A58: Cross-calibration results, SCATHA vs. 1984-129, E=139.5 keV Figure A59: Cross-calibration results, SCATHA vs. 1984-129, E=160.5 keV Figure A60: Cross-calibration results, SCATHA vs. 1984-129, E=181.5 keV Figure A61: Cross-calibration results, SCATHA vs. 1984-129, E=203 keV Figure A62: Cross-calibration results, SCATHA vs. 1984-129, E=224.5 keV Figure A63: Cross-calibration results, SCATHA vs. 1984-129, E=245.5 keV Figure A64: Cross-calibration results, SCATHA vs. 1984-129, E=288.5 keV Figure A65: Cross-calibration results, SCATHA vs. 1984-129, E=267 keV Figure A66: Cross-calibration results, SCATHA vs. 1984-129, E=830 keV Figure A67: Cross-calibration results, SCATHA vs. 1984-129, E=1222.5 keV Figure A68: Cross-calibration results, SCATHA vs. 1984-129, E=1616.5 keV Figure A69: Cross-calibration results, SCATHA vs. 1984-129, E=2011 keV ## **DISTRIBUTION LIST** DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Et Balvoir, VA, 22060, 6218 Ft Belvoir, VA 22060-6218 1 cy AFRL/RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL/RVBXR/Adrian Wheelock 1 cy This page is intentionally left blank.