

 AEROSPACE REPORT NO.
 TOR-2014-00361

Algorithms for Parallelizing AE9/AP9

December 30, 2013

T. Paul O’Brien
Space Science Applications Laboratory
Physical Sciences Laboratories

Prepared for:

Air Force Research Laboratory
Kirtland AFB NM 87117-5776

Contract No. FA8802-09-C-0001

Authorized by: Engineering and Technology Group

Distribution Statement A: Approved for public release; distribution is unlimited.

PHYSICAL SCIENCES LABORATORIES

The Aerospace Corporation functions as an “architect-engineer” for national security programs,
specializing in advanced military space systems. The Corporation's Physical Sciences Laboratories
support the effective and timely development and operation of national security systems through
scientific research and the application of advanced technology. Vital to the success of the Corporation
is the technical staff’s wide-ranging expertise and its ability to stay abreast of new technological
developments and program support issues associated with rapidly evolving space systems.
Contributing capabilities are provided by these individual organizations:

Electronics and Photonics Laboratory: Microelectronics, VLSI reliability, failure
analysis, solid-state device physics, compound semiconductors, radiation effects,
infrared and CCD detector devices, data storage and display technologies; lasers and
electro-optics, solid-state laser design, micro-optics, optical communications, and fiber-
optic sensors; atomic frequency standards, applied laser spectroscopy, laser chemistry,
atmospheric propagation and beam control, LIDAR/LADAR remote sensing; solar cell
and array testing and evaluation, battery electrochemistry, battery testing and
evaluation.

Space Materials Laboratory: Evaluation and characterizations of new materials and
processing techniques: metals, alloys, ceramics, polymers, thin films, and composites;
development of advanced deposition processes; nondestructive evaluation, component
failure analysis and reliability; structural mechanics, fracture mechanics, and stress
corrosion; analysis and evaluation of materials at cryogenic and elevated temperatures;
launch vehicle fluid mechanics, heat transfer and flight dynamics;
aerothermodynamics; chemical and electric propulsion; environmental chemistry;
combustion processes; space environment effects on materials, hardening and
vulnerability assessment; contamination, thermal and structural control; lubrication and
surface phenomena. Microelectromechanical systems (MEMS) for space
applications; laser micromachining; laser-surface physical and chemical interactions;
micropropulsion; micro- and nanosatellite mission analysis; intelligent
microinstruments for monitoring space and launch system environments.

Space Science Applications Laboratory: Magnetospheric, auroral and cosmic-ray
physics, wave-particle interactions, magnetospheric plasma waves; atmospheric and
ionospheric physics, density and composition of the upper atmosphere, remote sensing
using atmospheric radiation; solar physics, infrared astronomy, infrared signature
analysis; infrared surveillance, imaging and remote sensing; multispectral and
hyperspectral sensor development; data analysis and algorithm development;
applications of multispectral and hyperspectral imagery to defense, civil space,
commercial, and environmental missions; effects of solar activity, magnetic storms and
nuclear explosions on the Earth’s atmosphere, ionosphere and magnetosphere; effects
of electromagnetic and particulate radiations on space systems; space instrumentation,
design, fabrication and test; environmental chemistry, trace detection; atmospheric
chemical reactions, atmospheric optics, light scattering, state-specific chemical
reactions, and radiative signatures of missile plumes.

 i

 AEROSPACE REPORT NO.
 TOR-2014-00361

Algorithms for Parallelizing AE9/AP9

Approved by:

© The Aerospace Corporation, 2013.

All trademarks, service marks, and trade names are the property of their respective owners.

SC-2350(5666, 13, JS)

 ii

Abstract

This report describes algorithms for parallelization of AE9/AP9. Especially for
Monte Carlo scenarios, in which the entire mission must be simulated many times,
parallelization should afford significant improvements in speed. The simulation can
be broken up in the time domain and in the scenario domain. Breaking up the calcu-
lation in the time domain requires some care since the “worst-case running average”
aggregators (e.g., worst-case one-day average flux) require stitching between time
chunks. Parallelizing in the scenario domain requires only that the master processes
combine results from the various threads and compute summary statistics (e.g., per-
centiles). There are additional minor parallelization opportunities as well. This report
describes the concept of the various types of parallelization and provides specific
algorithms and equations for doing the time-domain stitching of the aggregators.

 iii

Acknowledgments

The author acknowledges useful discussions with the AE9/AP9 team.

 iv

Contents

1. Introduction 1

2. Algorithm overview .. 2

2.1 Steps 1 and 2—Setup ... 2

2.2 Steps 3 and 4—Computing Flux .. 2

2.3 Steps 5 and 6—Aggregation .. 4

2.4 Steps 7, 8, and 9—Summary Statistics .. 4

2.5 Prioritizing Parallelization ... 4

3. Algorithms for Parallelizing Aggregators ... 5

3.1 The Fluence Aggregator ... 6

3.2 The Mean Aggregator .. 7

3.3 The Dose Aggregator ... 7

3.4 The Boxcar Aggregator .. 7

3.5 The Doserate Aggregator ... 8

3.6 The Expavg Aggregator ... 9

4. Summary 12

References 13

Figure

 1. Overview strategy for maximal parallelization .. 3

Table

 1. AE9/AP9 Aggregators ... 5

 1

1. Introduction

The AE9/AP9 computer code is far more computationally intensive than any of its predecessors
[Ginet et al., 2013]. First, AE9/AP9 represents the environment in terms of directional fluxes, which,
for most applications, it must integrate numerically to compute an omnidirectional flux. In compari-
son, AE8/AP8 only had to interpolate omnidirectional fluxes to the spacecraft location. This adds a
factor of ~10 to the number of fluxes that must be calculated in AE9/AP9. Second, AE9/AP9 uses a
more sophisticated drift shell magnetic coordinate system to represent the fluxes, and those coordi-
nates take longer to compute than the field-line coordinates used by AE8/AP8. Third, in order to pro-
vide confidence intervals, AE9/AP9 provides a set of scenarios, with each scenario having a per-
turbed statistical map from which the fluxes are drawn, and there being 40 or more scenarios. Finally,
in order to represent dynamics for worst-case calculations, it is necessary to simulate the entire mis-
sion under consideration, rather than just a few representative orbits [O’Brien, 2007]. Together, all of
these features of AE9/AP9 suggest the need for parallelization.

Individual AE9/AP9 scenarios are independent, thus the scenario is a natural dimension along which
to parallelize. Also, AE9/AP9 was designed to permit parallelization in the time domain through the
use of an “epoch time” input that initializes the random number generator for a specified start date
and then “winds-forward” the state variables to the start of the time chunk to ensure that all chunks
computed separately are identical to what they would have been had they been computed serially.
Additionally, the random number seed is specific to each scenario, so that a scenario will be the same
whether it is run in isolation or with many other scenarios. Finally, a single “run” of AE9/AP9 may be
asked to compute a number of useful quantities, which we call aggregators. An example aggregator is
the total dose behind a range of shielding depths, or the worst-case 24-hour average electron flux.
Since the aggregators are independent of each other, they afford another possibility for parallelization.

 2

2. Algorithm overview

Figure 1 show an overview of a nearly maximal parallelization strategy, i.e., one that minimizes
redundant calculations while assuming a low cost for inter-thread communication (e.g., on a shared-
memory system). We assume a master thread that launches several slave threads in a sequence of fork
and join operations, until the final results are written to the file system.

2.1 Steps 1 and 2—Setup
In step 1 in Figure 1, the master thread ingests user input. The user specifies which model to run,
what kind of run to do, the ephemeris for the run, and what aggregators to use. The master thread then
breaks up the ephemeris into time chunks that are passed to slave threads for the computation of the
projection weights. Projection weights require magnetic coordinates for each time point; then, those
coordinates are used to compute the matrices that project the global model flux map onto the space-
craft trajectory. The calculation of coordinates is independent for each time point, so it is natural to
split up the calculation along the time domain. The coordinates are re-used for every scenario, so
there is no need (yet) to split along the scenario dimension. Step 2 has each slave thread computing
coordinates and weights for one time chunk, then passing those results back to the master thread. The
magnetic coordinate calculation takes longer depending on the location of the ephemeris point. There-
fore, step 2 could benefit substantially from load balancing (although the value of load balancing
diminishes if the time chunk is longer than a few orbits).

2.2 Steps 3 and 4—Computing Flux
In step 3 in Figure 1, the master thread again breaks the problem up in the time domain (not neces-
sarily in the same time chunks used by steps 1 and 2) in preparation for the flux calculation. Because
at this point in the processing the aggregators require the raw time series of flux at the spacecraft, the
master thread must also prepare the aggregators to operate on each time chunk. Finally, the master
thread can set up the calculation for each scenario (with its own instances of the aggregators) to run
independently. In step 4, each slave thread computes the flux and runs the aggregator for one time
chunk and one scenario. The aggregator partial results and ghost data (but not necessarily the full flux
time series) are reported back to the master thread.

Because the magnetic coordinate data is very large, it is much more efficient on non-shared-memory
machines to send the run parameters for steps 3 and 4 along with the dispatch from step 1 to 2 so that
there is no need to return information to the master thread between steps 2 and 4. In this approach,
step 3 would occur on each of the slave threads from step 2, and each slave thread would fork multi-
ple subthreads (up to one per scenario) for step 4.

Is it even useful to split in time and scenario? The extra overhead associated with splitting along two
dimensions simultaneously may not be worth the trouble if one can split arbitrarily finely in either of
the dimensions. In fact, once one has committed to splitting in the time dimension, there is not neces-
sarily anything to be gained by also splitting along the scenario dimension in step 4. Conversely,

 3

Figure 1. Overview strategy for maximal parallelization

•Epoch time
•Scenario ID
•What model to run
•Prior time step

•What to aggregate
Weights Matrix

(Flux vs time, energy)
Aggregator partial results
Aggregator ghost data

Aggregator results for each
scenario

Compute Flux

Aggregator
Merge

•Ephemeris
•What model to run

Compute Weights

Master Thread:
• Ingest user input
• Split ephemeris on time
• Dispatch time chunks

Slave Threads:
(Split on time domain)
• Compute coordinates and weights for

each time chunk

Master Thread:
• Merge weights
• Split on time
• Dispatch scenarios for each time chunk

Slave Threads:
(Split by time and scenario)
• Compute flux for each time, scenario
• Run aggs on flux

Master Thread:
• Collect agg results along time dimension
• Dispatch agg merge for each agg,

scenario

Slave Threads:
(Split by scenario and aggregator)
• Merge along time dimension for each

agg, scenario

Master Thread:
• Collect agg results among scenarios
• Dispatch stats calculator for each agg and

report time

Statistics
Slave Threads:
(Split by aggregator, report time)
• Compute statistics across scenarios
• Write output

Statistical results for each
aggregator, report time

1

2

3

4

5

6

7

8

Master Thread:
• Collect agg results by report time
• Write stats reports for each agg

9

 4

splitting only in the scenario dimension is less useful because one cannot split to more threads than
there are scenarios. On a shared-memory system with only 4–16 processors, and a typical set of 40 or
more scenarios to run, this is not an issue. However, on a cluster, with potentially hundreds of threads
and little shared memory, this distinction is very important. We will see that splitting in the time
domain does have its costs, but avoiding them to split only in the scenario domain would lock us into
a parallelization scheme that cannot scale up to use the full available computational resources.

2.3 Steps 5 and 6—Aggregation
In step 5, the master thread collects the aggregator results along the time dimension in preparation for
merging them together. Then, the master dispatches one aggregator and one scenario to each slave
thread for merging the aggregators’ results along the time domain. Section 3 describes the aggregator
partial results, ghost data, and merging algorithms. Step 6 is broken up by scenario and aggregator.
Again, a 2-D split is depicted, but this time neither dimension of the 2-D split can be divided into
arbitrarily small pieces: the user defines the number of scenarios and aggregators, so splitting in two
dimensions increases the utilization of available processors. It is noteworthy that different aggregators
involve different levels of complexity in their merge step (step 6). So steps 5 and 6 are an important
place for load balancing. At the completion of step 6, the slave threads return final results for each
aggregator for each scenario.

2.4 Steps 7, 8, and 9—Summary Statistics
In step 7, the master thread collects the aggregator results and groups all the scenario results for a
particular aggregator. It then dispatches each aggregator to a slave thread for summary statistics (such
as percentiles), which are computed by analyzing the distribution of results across scenarios. Because
the user may have requested several intermediate reporting times as well as the final report from each
aggregator, it is possible to split step 8 by both the aggregator and the report time. In step 8, each
slave thread computes the summary statistics for each report time and returns them to the master
thread.

Finally, in step 9, the master thread collects the reports by aggregator, and produces one time-ordered
file of summary statistics for each aggregator.

2.5 Prioritizing Parallelization
We have a mixed experience with regards to whether it takes longer to do step 4 or step 5. For a flu-
ence/dose type run, step 4 is clearly the longest step because the aggregators are trivially simple.
However, when worst-case aggregators are included, step 6 can actually exceed step 4. When a very
long time interval is to be simulated, step 2 can become significant. When frequent (e.g., daily)
reporting is requested, step 8 can become significant. However, for most of the cases we have run, it
is steps 4 and 6 that dominate the calculation.

 5

3. Algorithms for Parallelizing Aggregators

AE9/AP9 supports several different aggregators. They are listed in Table 1. All the aggregators are
based on the time series j(E,t), which is the flux versus energy at a specific time. The dose and
doserate aggregators rely on ShielDose2 [Seltzer, 1994], S(J(E,t);d), and so work only with omnidi-
rectional differential (per unit energy) flux. The other aggregators can work with any kind of flux.

We will assume that the time domain is divided into Nc time chunks, each of which spans a duration
Tc, and covers times from tc-1 to tc, or discrete time steps 𝑡1+𝑘𝑐−1 to 𝑡𝑘𝑐. Time tags are elapsed time, so
continuous time starts at t=0 and the first discrete time tag is t1=0. The subscript c will be used to rep-
resent information specific to time chunk c. Reports are generated at times designated tr or discrete
time steps 𝑡𝑘𝑟.Both c and r start at 1. In some of the equations below, we will see references to kc–1;
for the edge case when c=1, we take kc–1=k0=0; thus, a reference to 𝑡1+𝑘𝑐−1 for c=1 is actually a refer-
ence to t1.

We will work through each of the aggregators, in turn, explaining how it can be parallelized over time
chunks. Because the flux time series itself can be enormous (e.g., 20 floating-point numbers every 10
seconds of simulated time, for many scenarios and many simulated years), we have striven to paral-
lelize the aggregators in a way that requires minimal passing of raw flux time series data between the
slaves and the master thread. Thus, the aggregator may return partial results for the time chunk as
well as ghost data that is needed to merge the partial results from multiple time chunks, but it is
assumed the flux time series itself will never be passed between threads, except as contained in
aggregator ghost data.

Table 1. AE9/AP9 Aggregators

Name Equation Description
Fluence

𝐽(𝐸, 𝑡) = � 𝑗(𝐸, 𝑡′)𝑑𝑡′
𝑡

0

Time integral of flux
along orbit versus energy
since start of mission

Mean 𝚥(̅𝐸, 𝑡) = 𝐽(𝐸, 𝑡)/𝑡 Time average of flux
along orbit versus energy
since start of mission

Dose
𝐷(𝑑, 𝑡) = � 𝐺(𝑑,𝐸)𝐽(𝐸, 𝑡)𝑑𝐸

∞

0
= 𝑆(𝐽(𝐸, 𝑡);𝑑)

Total dose since start of
mission

Boxcar 𝚥m̅ax(𝐸, 𝑡; 𝜏) = max
𝜏 ≤ 𝑡′ ≤ 𝑡𝚥(̅𝐸, 𝑡′; 𝜏)

𝚥(̅𝐸, 𝑡; 𝜏) =
1
𝜏
� 𝑗(𝐸, 𝑡′)𝑑𝑡′
𝑡

𝑡−𝜏

Worst case box-car aver-
age flux (time window τ)
since start of mission

 6

Name Equation Description
Expavg

𝚥m̃ax(𝐸, 𝑡; 𝜏) = max
𝑡 �

1
𝜏
� exp �

t − t′
τ

� j(𝐸, 𝑡′)𝑑𝑡′
𝑡

0
�

Worst case exponential
average flux (time win-
dow τ) since start of mis-
sion (simulates RC
circuit for internal
charging analysis)

Doserate
�̇�(𝑑, 𝑡; 𝜏) = � 𝐺(𝑑,𝐸)𝚥(̅𝐸, 𝑡; 𝜏)𝑑𝐸

∞

0
= 𝑆(𝚥(̅𝐸, 𝑡; 𝜏);𝑑)

Dose rate averaged over
preceding time interval
(τ)

3.1 The Fluence Aggregator
We begin with the fluence aggregator, and recast it as a discrete sum:

 𝐽(𝐸𝑖 , 𝑡𝑘) = ∑ 𝑗(𝐸𝑖 , 𝑡𝑘′)∆𝑡𝑘′𝑘
𝑘′=1 (1)

 ∆𝑡𝑘 = �
𝑡2 − 𝑡1 𝑘 = 1

𝑡𝑁𝑘 − 𝑡𝑁𝑘−1 𝑘 = 𝑁𝑘
𝑡𝑘+1−𝑡𝑘−1

2
otherwise

�. (2)

We have defined ∆𝑡𝑘 under the assumption that each time point represents a time bin, rather than an
entry in a time grid. Thus, to compute fluence for a day, the first time point would be at midnight, and
the last time point would be just before midnight on the next day.

The fluence calculation can be parallelized by means of the partial fluence Jc(Ei,tr) accumulated
within time chunk c, and the final chunk partial fluence 𝐽𝑐(𝐸𝑖, 𝑡𝑘𝑐):

 𝐽𝑐(𝐸𝑖, 𝑡𝑘) = ∑ 𝑗(𝐸𝑖 , 𝑡𝑘)∆𝑡𝑘
𝑘𝑐
𝑘′=1+𝑘𝑐−1 . (3)

We note that to compute ∆𝑡𝑘 the aggregator must know the time tags immediately before and after the
time chunk. That is, it would need to know 𝑡𝑘𝑐−1and 𝑡1+𝑘𝑐. The aggregator would also need to know Nk.

Ghost data and partial results for the fluence aggregator are thus:

• Input

tk for k in [kc-1,1+kc]

kc, Nk

• Output

𝐽𝑐�𝐸𝑖, 𝑡𝑘𝑟� for kr in [1+kc-1,kc]

𝐽𝑐�𝐸𝑖, 𝑡𝑘𝑐�

 7

Stitching together fluence for time chunks is simple:

 𝐽�𝐸𝑖 , 𝑡𝑘𝑟� = 𝐽𝑐�𝐸𝑖, 𝑡𝑘𝑟�+ ∑ 𝐽𝑐′�𝐸𝑖, 𝑡𝑘𝑐′�
𝑐−1
𝑐′=1 . (4)

That is, the reported fluence at 𝑡𝑘𝑟 is the partial fluence 𝐽𝑐�𝐸, 𝑡𝑘𝑟� for the time chunk containing kr
plus the sum of the final partial fluences of the previous time chunks.

3.2 The Mean Aggregator
The mean aggregator in discrete form is:

 𝚥�̅𝐸𝑖 , 𝑡𝑘𝑟� = �
𝐽(𝐸𝑖 , 𝑡𝑘𝑟) 𝑡2⁄ 𝑘𝑟 = 1
𝐽(𝐸𝑖 , 𝑡𝑘𝑟) 𝑡𝑘𝑟⁄ otherwise

� (5)

Parallelizing the mean aggregator builds on the fluence aggregator, using the same ghost data and
partial results, with Eq. (5) applied after Eq. (4).

3.3 The Dose Aggregator
The dose aggregator in discrete form is:

 𝐷�𝑑, 𝑡𝑘𝑟� = 𝑆�𝐽�𝐸𝑖 , 𝑡𝑘𝑟�;𝑑�. (6)

As with the mean aggregator, parallelizing the dose aggregator builds on the fluence aggregator, using
the same ghost data and partial results, with Eq. (6) applied after Eq. (4).

3.4 The Boxcar Aggregator
The boxcar aggregator is the maximum-to-date of a windowed running average, with window length
τ. The discrete representation of the boxcar aggregator is:

 𝚥m̅ax(𝐸𝑖, 𝑡𝑘; 𝜏) =
max

𝜏 ≤ 𝑡𝑘′ ≤ 𝑡𝑘𝚥(̅𝐸𝑖, 𝑡𝑘′; 𝜏) (7)

 𝚥(̅𝐸𝑖 , 𝑡𝑘; 𝜏) = 1
𝜏
�𝐽(𝐸𝑖 , 𝑡𝑘) − 𝐽(𝐸𝑖 , 𝑡𝑘 − 𝜏)�. (8)

We note that the boxcar worst case is not defined for t<τ, because averages over intervals shorter
than τ can easily exceed the meaningful worst case for averages of length τ. The boxcar and doserate
aggregators both rely on a box-car running average, 𝚥(̅𝐸, 𝑡; 𝜏) with time window τ. That running aver-
age is, in turn, computed from the fluence at time tk minus the fluence at time tk-τ in the past. It is best
to compute the past fluence 𝐽(𝐸𝑖 , 𝑡𝑘 − 𝜏) by interpolation in time.

Ghost data and partial results for the boxcar aggregator are thus:

• Input

 8

tk for k in [kc-1,1+kc]

kc, Nk

• Output

𝚥m̅ax,c�𝐸𝑖, 𝑡𝑘𝑟; 𝜏� for 𝑡𝑘𝑟 in [𝑡1+𝑘𝑐−1 + 𝜏, 𝑡𝑘𝑐]

𝚥m̅ax,c�𝐸𝑖, 𝑡𝑘𝑐; 𝜏�

𝐽𝑐(𝐸𝑖, 𝑡𝑘) for 𝑡𝑘 in [𝑡1+𝑘𝑐−1 , 𝑡𝑘𝑐−1 + 𝜏] or [𝑡𝑘𝑐 − 𝜏, 𝑡𝑘𝑐]

The partial result 𝚥m̅ax,c is given by:

 𝚥m̅ax,c(𝐸𝑖, 𝑡𝑘; 𝜏) =
max

𝑡1+𝑘𝑐−1 + 𝜏 ≤ 𝑡𝑘′ ≤ 𝑡𝑘𝚥(̅𝐸𝑖, 𝑡𝑘′; 𝜏). (9)

That is, it is the maximum starting τ after the beginning of time chunk c rather than at t=0.

First, we stitch 𝚥 ̅for the edge window cases, i.e., when 𝑡1+𝑘𝑐−1 ≤ 𝑡𝑘𝑟 < 𝑡1+𝑘𝑐−1 + 𝜏 for any c>1 using
Eq. (4) then Eq. (8). Equation (4) is not needed when Tc>τ, and one can simply replace 𝐽(𝐸𝑖 , 𝑡𝑘) in
Eq. (8) with 𝐽𝑐(𝐸𝑖, 𝑡𝑘). We can then compute 𝚥m̅ax,c�𝐸𝑖, 𝑡𝑘𝑟 ; 𝜏� for all 𝑡𝑘𝑟 in the edge window:

 𝚥m̅ax,c�𝐸𝑖, 𝑡𝑘𝑟 ; 𝜏� =
max

𝑡1+𝑘𝑐−1 − 𝜏 ≤ 𝑡𝑘′ ≤ 𝑡𝑘𝑟
𝚥(̅𝐸𝑖, 𝑡𝑘′; 𝜏). (10)

Finally, we revise all the partial maxima 𝚥m̅ax,c�𝐸𝑖, 𝑡𝑘𝑟 ; 𝜏� into 𝚥m̅ax�𝐸𝑖, 𝑡𝑘𝑟; 𝜏� by taking the maximum
over the previous partial maxima and also the previous end-of-chunk maxima:

 𝚥m̅ax�𝐸𝑖, 𝑡𝑘𝑟 ; 𝜏� = max � max
𝑐′ < 𝑐𝚥m̅ax,𝑐�𝐸𝑖, 𝑡𝑘𝑐′; 𝜏�, max

𝑟′ ≤ 𝑟𝚥m̅ax,𝑐 �𝐸𝑖 , 𝑡𝑘𝑟′ ; 𝜏��. (11)

3.5 The Doserate Aggregator
The doserate aggregator has a very simple special case when the reporting period exactly matches the
averaging window (i.e., in continuous time tr = tr-1+τ), the time step is constant, and the reporting
time is an integer multiple of the time step. This special case can be addressed by simple post-
processing of the dose aggregator:

 �̇��𝑑, 𝑡𝑘𝑟 ; 𝜏� = �
𝐷𝑑�𝑑,𝑡𝑘𝑟�

𝜏
𝑟 = 1

𝐷𝑑�𝑑,𝑡𝑘𝑟�−𝐷𝑑�𝑑,𝑡𝑘𝑟−1�
𝜏

𝑟 > 1
� (12)

In a serial implementation of the doserate aggregator, if the time window τ exactly matches the
reporting period, then there is no need for ghost data. The accumulator for ȷ(̅E, t; τ) can simply be
reset after each report is stored. However, in a parallel implementation, where time windows may
involve consecutive time chunks, at least some ghost data is necessary anyway; thus, the parallel

 9

implementation also enables the unlikely case of a time window that is not the same as the reporting
window; it also addresses the likelihood that the time step is uneven, or that the reporting time is not
an integer multiple of the time step.

For parallel implementation, the doserate aggregator in discrete form is:

 �̇��𝑑, 𝑡𝑘𝑟 ; 𝜏� = 𝑆�𝚥�̅𝐸𝑖 , 𝑡𝑘𝑟 ; 𝜏�;𝑑� (13)

The parallel implementation of the doserate aggregator is similar to the boxcar aggregator, except no
running maximum of 𝚥�̅𝐸𝑖 , 𝑡𝑘𝑟; 𝜏� is computed, and there is the added post-processing through S.

Ghost data and partial results for the doserate aggregator are thus:

• Input

tk for k in [kc-1,1+kc]

kc, Nk

• Output

�̇�(𝑑, 𝑡𝑘𝑟 ;𝑑) for 𝑡𝑘𝑟 in [𝑡1+𝑘𝑐−1 + 𝜏, 𝑡𝑘𝑐]

𝐽𝑐(𝐸𝑖, 𝑡𝑘) 𝑡𝑘 in [𝑡1+𝑘𝑐−1 , 𝑡𝑘𝑐−1 + 𝜏] or [𝑡𝑘𝑐 − 𝜏, 𝑡𝑘𝑐]

As in the boxcar, we stitch 𝚥 ̅for the edge window cases, i.e., when �𝑡𝑘𝑟 − 𝑡𝑘𝑐� < 𝜏 for any 1≤c<Nc
using Eq. (4) then Eq. (8) as for the boxcar. Then we compute �̇��𝑑, 𝑡𝑘𝑟; 𝜏� for the edge cases using
Eq. (13).

3.6 The Expavg Aggregator
The expavg aggregator is potentially the most challenging to break up in time. This is because the
running average is an infinite impulse response moving average filter; at every time step, it responds
to all prior fluxes.

The expavg aggregator in discrete form is:

 𝚥m̃ax(𝐸𝑖, 𝑡𝑘; 𝜏) =
max
tk′ 𝚥̃

(𝐸𝑖 , 𝑡𝑘′; 𝜏) (14)

 𝚥̃(𝐸𝑖 , 𝑡𝑘; 𝜏) = �1− exp �𝑡𝑘−1−𝑡𝑘
𝜏

�� j(𝐸𝑖, 𝑡𝑘) + exp �𝑡𝑘−1−𝑡𝑘
𝜏

� 𝚥̃(𝐸𝑖 , 𝑡𝑘−1; 𝜏)

 = ∑ j(𝐸𝑖, 𝑡𝑘′) �1 − exp �
𝑡𝑘′−1−𝑡𝑘′

𝜏
�� exp �

𝑡𝑘′−𝑡𝑘
𝜏

�𝑘
𝑘′=1

 = exp �
𝑡𝑘𝑐−1−𝑡𝑘

𝜏
� 𝚥̃�𝐸𝑖, 𝑡𝑘𝑐−1; 𝜏� + ∑ j(𝐸𝑖, 𝑡𝑘′) �1 − exp �

𝑡𝑘′−1−𝑡𝑘′
𝜏

��exp �
𝑡𝑘′−𝑡𝑘

𝜏
�𝑘

𝑘′=1+𝑘𝑐−1 (15)

 10

The third form of Eq. (15) allows us to stitch together consecutive chunks. We could define a partial
running average as

 𝚥�̃�(𝐸𝑖, 𝑡𝑘; 𝜏) = ∑ j(𝐸𝑖, 𝑡𝑘) �1 − exp �
𝑡𝑘′−1−𝑡𝑘′

𝜏
��exp �

𝑡𝑘′−𝑡𝑘
𝜏

�𝑘
𝑘′=1+𝑘𝑐−1 (16)

We could have each slave thread return the entire partial moving average time series 𝚥�̃�(𝐸𝑖, 𝑡𝑘; 𝜏), and
then compute the whole series of moving averages:

 𝚥̃(𝐸𝑖 , 𝑡𝑘; 𝜏) = 𝚥�̃�(𝐸𝑖, 𝑡𝑘; 𝜏) + ∑ 𝚥�̃�′�𝐸𝑖, 𝑡𝑘𝑐′−1; 𝜏�exp �
𝑡𝑘𝑐′−1−𝑡𝑘

𝜏
�c′<𝑐 (17)

We could then apply Eq. (14) to compute 𝚥m̃ax(𝐸𝑖, 𝑡𝑘; 𝜏).

However, we would like to avoid the need to pass the entire time series 𝚥�̃�(𝐸𝑖, 𝑡𝑘; 𝜏) between threads
because it can amount to a lot of data. Instead, we will have the slave pass back partial results
𝚥m̅ax,𝑐�𝐸𝑖, 𝑡𝑘𝑟; 𝜏� at the reporting times and ghost data 𝚥̃(𝐸𝑖 , 𝑡𝑘; 𝜏) for a window that is several (e.g.,
Nτ=10) τ long. For raw fluxes that vary over 5 orders of magnitude, a ghost window of 10τ ensures
that the contribution of anything prior to the ghost window is negligible. Such a strategy degenerates
to passing the entire series of 𝚥m̅ax,𝑐(𝐸𝑖, 𝑡𝑘; 𝜏) when Nτ τ is longer than the time chunk Tc. A typical
internal charging specification employs a τ of 1 day, but special cases may employ a τ of 6 months or
longer.

Ghost data and partial results for the expavg aggregator are thus:

• Input

tk for k in [kc-1,kc]

kc, Nk

• Output

𝚥m̃ax,𝑐�𝐸𝑖, 𝑡𝑘𝑟; 𝜏� for 𝑡𝑘𝑟 in [𝑡1+𝑘𝑐−1 + 𝑁𝜏𝜏, 𝑡𝑘𝑐]

𝚥�̃��𝐸𝑖, 𝑡𝑘𝑐; 𝜏�

𝚥�̃�(𝐸𝑖, 𝑡𝑘; 𝜏) for 𝑡𝑘 in [𝑡1+𝑘𝑐−1 , min (𝑡𝑘𝑐 , 𝑡1+𝑘𝑐−1 +𝑁𝜏𝜏)]

The partial result 𝚥m̃ax,𝑐�𝐸𝑖, 𝑡𝑘𝑟 ; 𝜏� is given by:

 𝚥m̃ax,𝑐(𝐸𝑖, 𝑡𝑘; 𝜏) =
max

𝑡1+𝑘𝑐−1 ≤ tk′ ≤ 𝑡𝑘𝑐
𝚥̃(𝐸𝑖 , 𝑡𝑘′; 𝜏) (18)

We can compute 𝚥̃(𝐸𝑖, 𝑡𝑘; 𝜏) for 𝑡𝑘 in the edge window [𝑡1+𝑘𝑐−1 , min (𝑡𝑘𝑐 , 𝑡1+𝑘𝑐−1 + 𝑁𝜏𝜏)] by adding
in the last value from the prior time chunks according to Eq. (17). From this, we can compute
𝚥m̃ax�𝐸𝑖, 𝑡𝑘𝑟; 𝜏� for all 𝑡𝑘𝑟 in the edge window. Then, for all 𝑡𝑘𝑟 outside the edge window, we simply
add on the prior end-of-chunk values 𝚥�̃��𝐸𝑖, 𝑡𝑘𝑐; 𝜏� with a proper exponential decay factor:

 11

 𝚥m̃ax�𝐸𝑖, 𝑡𝑘𝑟 ; 𝜏� = max�𝚥m̃ax�𝐸𝑖 , 𝑡𝑘𝑟−1; 𝜏�, 𝚥̃′max�𝐸𝑖 , 𝑡𝑘𝑟; 𝜏�� (19)

 𝚥̃′max�𝐸𝑖, 𝑡𝑘𝑟 ; 𝜏� ≈

�
𝚥�̃�𝑎𝑥�𝐸𝑖, 𝑡𝑘𝑟 ; 𝜏� 0 ≤ 𝑡𝑘𝑟 − 𝑡1+𝑘𝑐−1 ≤ 𝑁𝜏𝜏

𝚥�̃�𝑎𝑥,𝑐�𝐸𝑖, 𝑡𝑘𝑟 ; 𝜏� + ∑ 𝚥�̃�′�𝐸𝑖, 𝑡𝑘𝑐′−1; 𝜏�exp �
𝑡𝑘𝑐′−1−𝑡𝑘

𝜏
�𝑐−1

𝑐′=1 otherwise
� (20)

We are thus assuming that by the time we get to 𝑡𝑘𝑟>𝑡1+𝑘𝑐−1 + 𝑁𝜏𝜏, all contributions to 𝚥̃(𝐸𝑖 , 𝑡𝑘; 𝜏)
from prior time chunks are negligible. In Eq. (19), we take the maximum-to-date to ensure that a
maximum from a prior time chunk or a reconstructed maximum earlier in the same time chunk
appropriately replaces the partial result maximum.

We have conducted several numerical experiments using the algorithms described here and have con-
firmed that for a log-normally varying time series that spans 5 orders of magnitude, this approach
works to 10–13 maximum relative error (a couple orders of magnitude larger than the floating-point
error because we are doing sums of many variables, but well below the needs of satellite design, for
which relative error 10–2 is more than adequate). We have also confirmed that adding in serial corre-
lation (lag correlation) to the underlying data does not cause the algorithm to fail.

 12

4. Summary

We have described the overall approach to parallelizing large AE9/AP9 calculations. We have dis-
cussed different strategies for shared-memory and non-shared-memory systems (i.e., clusters). We
have also defined the various aggregators built into AE9/AP9 and how to break those aggregators up
over time.

In only one case, namely, the expavg aggregator, which approximates an RC circuit, do we potentially
lose information due to not passing the full flux time series from slave thread back to master. In that
case, the estimated relative error (~10–13) is many orders of magnitude smaller than what is of conse-
quence for satellite design.

Implementation of these algorithms will enable the large orbit surveys, long mission simulations, and
numerous Monte Carlo scenarios that enable sophisticated decision making by modern satellite
designers.

 13

References

Ginet., G. P., T. P. O’Brien, S. L. Huston, W. R. Johnston, T. B. Guild, R. Friedel, C. D. Lindstrom,
C. J. Roth, P. Whelan, R. A. Quinn, D. Madden, S. Morley, and Y. J. Su, “AE9, AP9 and
SPM: New models for specifying the trapped energetic particle and space plasma environ-
ment,” Space Sci. Rev., 2013, doi:10.1007/s11214-013-9964-y.

O’Brien, T. P. Preliminary algorithms for computation of mission aggregate and worst-case fluxes
from the empirical AE-9/AP-9 Model,” TOR-2007(3905)-18, The Aerospace Corporation, El
Segundo, CA, September 2007.

Seltzer, S. M., “Updated calculations for routine space-shielding radiation dose estimates: SHIEL-
DOSE-2,” Gaithersburg, MD, NIST Publication NISTIR 5477, 1994

	1. Introduction
	2. Algorithm overview
	2.1 Steps 1 and 2—Setup
	2.2 Steps 3 and 4—Computing Flux
	2.3 Steps 5 and 6—Aggregation
	2.4 Steps 7, 8, and 9—Summary Statistics
	2.5 Prioritizing Parallelization

	3. Algorithms for Parallelizing Aggregators
	3.1 The Fluence Aggregator
	3.2 The Mean Aggregator
	3.3 The Dose Aggregator
	3.4 The Boxcar Aggregator
	3.5 The Doserate Aggregator
	3.6 The Expavg Aggregator

	4. Summary
	References

