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PHYSICAL SCIENCES LABORATORIES 

The Aerospace Corporation functions as an “architect-engineer” for national security programs, 
specializing in advanced military space systems.  The Corporation's Physical Sciences Laboratories 
support the effective and timely development and operation of national security systems through 
scientific research and the application of advanced technology.  Vital to the success of the Corporation 
is the technical staff’s wide-ranging expertise and its ability to stay abreast of new technological 
developments and program support issues associated with rapidly evolving space systems.  
Contributing capabilities are provided by these individual organizations: 

 
Electronics and Photonics Laboratory:  Microelectronics, VLSI reliability, failure 
analysis, solid-state device physics, compound semiconductors, radiation effects, 
infrared and CCD detector devices, data storage and display technologies; lasers and 
electro-optics, solid-state laser design, micro-optics, optical communications, and fiber-
optic sensors; atomic frequency standards, applied laser spectroscopy, laser chemistry, 
atmospheric propagation and beam control, LIDAR/LADAR remote sensing; solar cell 
and array testing and evaluation, battery electrochemistry, battery testing and 
evaluation. 
 
Space Materials Laboratory:  Evaluation and characterizations of new materials and 
processing techniques:  metals, alloys, ceramics, polymers, thin films, and composites; 
development of advanced deposition processes; nondestructive evaluation, component 
failure analysis and reliability; structural mechanics, fracture mechanics, and stress 
corrosion; analysis and evaluation of materials at cryogenic and elevated temperatures; 
launch vehicle fluid mechanics, heat transfer and flight dynamics; 
aerothermodynamics; chemical and electric propulsion; environmental chemistry; 
combustion processes; space environment effects on materials, hardening and 
vulnerability assessment; contamination, thermal and structural control; lubrication and 
surface phenomena.  Microelectromechanical systems (MEMS) for space 
applications; laser micromachining; laser-surface physical and chemical interactions; 
micropropulsion; micro- and nanosatellite mission analysis; intelligent 
microinstruments for monitoring space and launch system environments. 
 
Space Science Applications Laboratory:  Magnetospheric, auroral and cosmic-ray 
physics, wave-particle interactions, magnetospheric plasma waves; atmospheric and 
ionospheric physics, density and composition of the upper atmosphere, remote sensing 
using atmospheric radiation; solar physics, infrared astronomy, infrared signature 
analysis; infrared surveillance, imaging and remote sensing; multispectral and 
hyperspectral sensor development; data analysis and algorithm development; 
applications of multispectral and hyperspectral imagery to defense, civil space, 
commercial, and environmental missions; effects of solar activity, magnetic storms and 
nuclear explosions on the Earth’s atmosphere, ionosphere and magnetosphere; effects 
of electromagnetic and particulate radiations on space systems; space instrumentation, 
design, fabrication and test; environmental chemistry, trace detection; atmospheric 
chemical reactions, atmospheric optics, light scattering, state-specific chemical 
reactions, and radiative signatures of missile plumes. 
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Abstract 

This report describes the algorithms employed to generate the AE9/AP9 V1.0 
runtime data tables. These algorithms begin with time series in-situ particle data that 
have already been cleaned and calibrated. The algorithms produce maps of the radia-
tion and plasma environment as a function of magnetic field coordinates, matrices 
needed to perturb those maps to represent uncertainty, and matrices needed to evolve 
dynamic (Monte Carlo) scenario environments in time. 
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1.  Introduction 

The AE9/AP9 runtime tables are generated by what is known within the team as the “turnkey sys-
tem.” The turnkey system consists of a set of MatlabTM codes and scripts to run them. These codes 
progress through a series of stages in the processing from cleaned and calibrated time series data to 
the data tables used at run time by the AE9/AP9 library and application. The turnkey system is run 
separately for each of the various models: AE9V10 (electron radiation), AP9V10 (proton radiation), 
SPMEV10 (electron plasma), SPMHV10 (proton plasma), SPMHEV10 (helium plasma), SPMOV10 
(oxygen plasma). 

The stages of the turnkey system are: 

prepdata Read in the data from each sensor and, if necessary, apply flags 
and break up into daily, sorted time series files. 

definebins Define the coordinate bins to be used (e.g., E, K, Φ). 
assign2bins Bin the time series data from each sensor into coordinate bins. 
binavg Compute time averages (e.g., 24 hours or 7 days) within bins. 
calctheta Compute θ1 and θ2 (statistical moments/percentiles in each bin) 

from binavg results. 
fill_maps Use templates to fill in gaps in theta maps for each sensor. 
combinetheta Combine filled, sensor-specific theta maps into one consensus 

map with errors (Stheta). 
calccov covs Compute a set of spatial covariances at zero lag. 
calccov 
lagcovs 

Compute a set of spatial covariances at various time lags. 

makecov cov Use calccov results to fill in spatial covariance matrix. 
makeQ Compute principal components. 
makecov 
lagcov 

Use calccov and makeQ results to fill in spatial covariance 
matrices at various time lags. 

buildmc Compute the final Monte Carlo scenario quantities, if needed, 
and save the runtime tables to a single file (e.g., 
AE9V10_runtime_tables.mat). 

figs Generate an extensive set of diagnostic figures. 
 
The turnkey process is depicted graphically in Figure 1. The items above in italics are not applicable 
to the plasma models, which do not have Monte Carlo scenario capabilities. Each stage in the pro-
cessing is controlled by a set of “global” variables that describe the model and set parameter values. 
Thus, it is possible to restart the entire processing chain with a single command, and it will run unat-
tended through to completion. However, as the algorithms themselves were often being updated dur 
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Figure 1.  Graphical depiction of the "Turnkey System" that generates the runtime tables 

from cleaned and calibrated time series data. 
 

ing the V1.0 development process, it is also possible to run only part of the turnkey process, starting 
and stopping at an arbitrary stage using partial results from a prior run. 

It is important to note, since it will come into play later in this document, that most of the models 
assume (based on visual inspection) that the long-term statistical distribution of data within a given 
spatial bin has a log-normal distribution. However, for the energetic electrons in AE9, the shape is 
assumed to be Weibull. The properties of these distributions will be discussed in more detail in later 
sections. 
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2.  Generating Flux Maps 

A flux map is a tabular representation of the statistical properties of the flux in each coordinate bin. In 
AE9/AP9 V1.0, the flux map has two parameters at each location, which are expressed in terms of the 
median (m50) and 95th percentile (m95) flux within the bin: 

 𝜃1 = ln𝑚50 (1) 

 𝜃2 = ln(𝑚95 −𝑚50) (2) 

This transformation from flux percentiles to θ guarantees that, for any real values of θ1, θ2, the fluxes 
will satisfy m95 > m50 > 0. Further, for m95>>m50, as is often the case, θ2 becomes approximately the 
natural log of m95. Thus, a Gaussian distribution of errors in θ translates to approximately log-normal 
errors in m50 and m95. Log-normal errors are common in space particle fluxes, and so we assume the 
errors in θ are Gaussian. The errors in θ are given by cov(δθ), which is the local 2x2 matrix that 
represents the uncertainty in θ as measured by a single sensor on a single spacecraft. The entries in 
this matrix shrink with the square root of the sample size within the bin, and the off-diagonal term 
reflects the fact that errors in θ1 and θ2 are necessarily correlated. When we combine data across sen-
sors, this cov(δθ) will feed into how we combine them and into the global error representation Sθ. 

For each sensor, we generate a separate tabulation of θ and cov(δθ) on the spatial grid (a flux map). 
That process involves several steps. 

2.1 Loading and Filtering (prepdata) 
The first step in generating a flux map is reading the time series data, filtering it and reorganizing as 
needed, and saving it into a file with a standard structure. The filtering typically involves removing 
times flagged for possibly having contamination (e.g., from solar energetic particles), and possibly 
applying ad hoc filters. Ad hoc filters originated because it was technically less cumbersome to 
include a few last-minute filters to the data at the start of the turnkey process rather than to continu-
ally generate new versions of the turnkey input data files. Reorganizing the data involves unwrapping 
an angular axis, if one is present, so that the flux table has only two dimensions: time and energy. 
Further, variable name translation may be necessary, such as converting “Hmin” to “h_min,” etc. 

At the completion of the prepdata step, each sensor is organized into daily files of filtered, calibrated, 
and cleaned particle flux, as well as associated coordinate and error information [see Ginet et al., 
2013, AE9/AP9 Tech Doc, Guild et al., 2009, and O’Brien 2012b]. The flux errors are provided in 
terms of the standard deviation of the natural log of flux, either using an ad hoc value or as a result of 
an inversion and/or intercalibration. 
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2.2 Defining the Bins (definebins) 
Before we can bin the data, we must define the bins, specifically, the bins in the 2nd and 3rd coordi-
nates (such as K, Φ and others described in Ginet et al. [2013]). The data are not binned in energy; 
rather, they are handled at their original energy channels provided to the turnkey system and will be 
interpolated onto the model energy grid at a later stage. The coordinate grid itself defines the nominal 
spatial bins. However, because the coordinate grid is rectangular, it is often the case that a large 
portion (half) of the nominal grid falls inside the loss cone. Therefore, the definebins step not only 
describes the bin limits for each spatial bin, it also applies a loss cone filter to remove bins that fall in 
the loss cone. 

For example, the AP9V10 high-altitude grid (K-Φ) uses a loss cone defined by the maximum value of 
K as a function of Φ. This maximum value is derived from the largest K at a given Φ that corresponds 
to an hmin of 200 km (that is, the K for which the particle’s drift-bounce orbit eventually intersects the 
atmosphere at 200 km geodetic altitude). The maximum K thus defined is given by a polynomial in Φ 
(rounded off): Log10 𝐾 =  −21.8 135.0Φ7 + 135.0Φ6 − 342.0Φ5 + 

 458.0Φ4 − 348.0Φ3 + 150.8Φ2 − 36.1Φ+ 4.7  (3) 

For K in G1/2RE and Φ in G RE
2. 

Bins whose center falls in the loss cone are removed from further consideration. Bins that partially 
overlap the loss cone are limited such that the bin edges in the second coordinate (e.g., K) are entirely 
outside the loss cone. Equivalently, bins whose upper or lower edges fall outside the valid range for 
one of the coordinates will have the edge adjusted to be at the limit of the valid range (e.g., K<0 is 
replaced by K=0). 

A bin consists of a lower, middle, and upper value for each spatial coordinate, and the lower and 
upper values typically split the difference between adjacent bin centers. The “full” grid of bins spans 
the full range of the second and third coordinates, and is thus referred to as the full Q2-Q3 grid. It can 
be referenced either by the row/column type subscripts or by a 1-D index that unwraps the 2-D grid 
onto a 1-D list. The “reduced” grid is only referenced by a 1-D index, which spans only the Nred bins 
that are not in the loss cone. Tables ired2full and ifull2red are used to convert 1-D indices between 
the two grids. Matlab’s sub2ind and ind2sub routines are used to convert between 2-D subscripts and 
1-D indices. In a table with N1 rows and N2 columns the coordinate (i1,i2) maps to a 1-D coordinate j 
according to: 

 𝑗 = 𝑁1(𝑖2 − 1) + 𝑖1. (4) 

That is, Matlab uses a 1-based, column-major indexing system, and therefore, so does AE9/AP9.  

An additional consideration is that AE9 and AP9 support two different grids, identified in the code as 
subgrids. The calculations described in this section are applied separately to the subgrids and com-
bined only at the very end of generating the runtime tables. 
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2.3 Binning (assign2bins) 
The assign2bins step is fairly straightforward: each spectrum from a given sensor at the original time 
resolution is assigned to a bin in the two spatial coordinates. The result is a set of files, each one con-
taining all the time samples from a specific sensor in a specific bin. The files are identified by the 
model, sensor, subgrid, and the reduced grid index for the bin. 

For the AE9 and AP9 models, there are two subgrids, so the assign2bins step is done twice, once for 
each subgrid. Because the subgrids overlap, some time samples may appear once in each subgrid. 
This is allowed because it is believed to help ensure a smooth interface of the two grids. It does not 
lead to over-counting since at runtime the grids are spliced, not summed. 

2.4 Averaging (binavg) 
Time averaging is used to suppress (and sometimes assess) random measurement errors, and to put 
the data from different sources on a consistent time index. 

First, the data are separated into “passes” within a bin. A pass is defined as any set of time samples in 
the bin that have no temporal gaps longer than 15 minutes. This definition allows for vehicles that 
physically move in and out of a bin, but also for spinning sensors where the field of view moves in 
and out of the bin. Successive spins would usually count as a single pass through the bin. Data within 
each pass are combined using a weighted flux average.  

The weighted flux average is a bit complicated because it combines two different approaches to com-
puting the error in the average. If the raw flux data is marked as x with error dx (which is the standard 
error of the natural log flux, sometimes denoted dlnj or dlogflux) and the average is given as y with 
error dy, then the weighted flux average 

 𝑦 =
∑ 𝑥𝑖

𝑑𝑥2
𝑁
𝑖=1

∑ 𝑑𝑥−2𝑁
𝑖=1

 (5) 

 𝑑𝑦 = max ��
∑

𝑥𝑖
2

𝑑𝑥2
𝑁
𝑖=1

𝑦2 ∑ 𝑑𝑥−2𝑁
𝑖=1

− 1, �1
𝑁
∑ 𝑑𝑥−2𝑁
𝑖=1 �

−1/2
� (6) 

The resulting dy is further limited to be between 0.1 and ln(10), which is to say that the resulting 
uncertainty is constrained to be between 10% and a factor of 10. Note that we do not apply a square-
root-N factor to shrink dy. We experimented with this, but determined that there was sufficient corre-
lation within a single pass that the square-root-N was not justified. 

After the pass averaging, we then proceed to average all the passes within time bins, using the same 
formulas used for pass averaging. For AP9, the time bin size is 1 week; for all other models, it is one 
day. 
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2.5 Computing Theta (calctheta) 
We require at least 50 time-averages for a given energy channel for a given sensor in a bin to proceed 
with the calculation of θ. Otherwise, the bin is designated as empty for the particular sensor and 
channel (we will fill in these empty bins by interpolation and extrapolation in a later step). 

In the alpha and beta versions of AE9/AP9, the calculation of theta (θ) was fairly straightforward:  the 
median and 95th percentiles were calculated directly from the averaged samples within bins. That 
approach guarantees good agreement between the model and the data at the 50th and 95th percentiles. 
However, a desire to guarantee good agreement with the mean and the 95th percentile motivated a 
change to a more indirect approach. 

The approach used in V1.0 fits θ1 and θ2 using one of three approaches depending on the model. In all 
models, the θ fit must match the observed 95th percentile in the bin (m95). For the plasma model, the θ 
fit must also match the observed mean <x> in the bin. For AE9 and AP9, the θ fit must match <x>95 
the mean of the flux up to the 95th percentile. We chose <x>95 because, in the radiation belt datasets, 
we are still concerned that the tail of the distribution might be affected by instrumental effects. To do 
the fitting, we need several new relationships. For the log Normal, we have: 

 𝑃[𝑋 < 𝑥] = Φ�𝑥−𝜇
𝜎
� (7) 

 Φ(𝑧) = 1
√2𝜋

∫ 𝑒−𝑡2/2𝑧
−∞ 𝑑𝑡 (8) 

 < 𝑥 > = exp (𝜇 + 𝜎2

2
) (9) 

 𝜇 = ln𝑚50 (10) 

 𝜎 =
ln𝑚95 𝑚50�

Φ−1(0.95) = ln𝑚95−𝜇
Φ−1(0.95) (11) 

 < 𝑥 >95=
∑ 𝑥𝑖𝑥𝑖<𝑚95
∑ 1𝑥𝑖<𝑚95

= exp (𝐶)Φ(𝑣95)
0.95

 (12) 

 𝐶 = 1
2
�𝑎2 − �𝜇 𝜎� �

2
� (13) 

 𝑎 = 𝜎 + 𝜇
𝜎�  (14) 

 𝑣95  = ln𝑚95 − 𝑎 (15) 

Here Φ() is the cumulative unit normal (standard Gaussian) distribution, with mean 0 and standard 
deviation 1, and Φ-1() is its inverse. We begin with the observed m95 and an guess for µ = ln m50, and 
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perform a 1-D optimization with respect to µ, fitting either <x> or <x>95, depending on the model 
(AP9 or a plasma model). With µ and m95, we can obtain θ1 and θ2 directly using Eq. (10) then Eqs. 
(1) and (2). We will later need to transform from flux x to a unit normal z using this relation: 

 𝑧 = ln 𝑥−𝜇
𝜎

  (16) 

For AE9, we are working with a Weibull distribution, and we use a different set of formulas: 

 𝑃[𝑋 < 𝑥] = 1 − exp �−�x
σ
�
γ
� (17) 

 < 𝑥 > = 𝜎Γ(1 + 1/𝛾) (18) 

 Γ(𝑧) = ∫ 𝑡𝑧−1∞
0 𝑒−𝑡𝑑𝑡 (19) 

 𝛾 =
ln�ln0.05

ln0.5� �

ln𝑚95 𝑚50�
 (20) 

 𝜎 = 𝑚50
(ln 2)1/𝛾 = 𝑚95

(ln 20)1/𝛾 (21) 

 < 𝑥 >95=
∑ 𝑥𝑖𝑥𝑖<𝑚95
∑ 1𝑥𝑖<𝑚95

= 𝜎𝛾∗ �ln 20 , 1 + 1
𝛾
� /0.95 (22) 

 γ∗(𝑧, 𝑣) = ∫ 𝑡𝑧−1𝑣
0 𝑒−𝑡𝑑𝑡 (23) 

Here Γ() is the gamma function, and γ*() is the incomplete gamma function (this notation varies 
slightly from some conventions because we needed to distinguish between the gamma function and 
the statistical parameter γ). Given m95, we can compute σ using Eq. (21). We then perform a 1-d 
search for γ in the range 0.01 to 10 so as to reproduce <x>95 according to Eq. (22). With γ and m95, 
we can obtain θ1 and θ2 directly using Eq. (20) then Eqs. (1) and (2). For the Weibull, the conversion 
between x and z is: 

 Φ(𝑧) = 1 − exp �−�x
σ
�
γ
� (24) 

Whichever statistical distribution we use, we compute θ for every sensor and every energy channel in 
every spatial bin using the entire dataset. We then compute an error covariance for θ by bootstrapping 
over resamples (with replacement) from the data within the bin. For each time sample in a bootstrap, 
we perturb the flux using a log Normal error distribution consistent with the error computed in the 
binavg step (dy, which is the standard error for the natural log of the averaged flux). We bootstrap 
200 times, with different error perturbations for the selected time averages in each bootstrap. From 
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these 200 bootstraps, we compute one estimate of θ. We can then compute the 2x2 error covariance 
for θ using these 200 bootstrap estimates. We denote this error covariance cov(δθ) as described in the 
introduction to this section. We will use θ and cov(δθ) in the next step, when we fill in and combine 
the flux maps. 

2.6 Filling in Each Sensor with Each Template (fill_maps) 
We fill in the gaps in the flux map from each sensor using a set of masks and templates. A mask is 
simply an arbitrary set of points that are manually selected for removal. Masks affect a very small 
number of points that did not pass visual inspection of the resulting flux maps from a prior build of 
the model. Masks are only used for SPMHE (helium plasma) and SPMO (oxygen plasma).  

A template is a global specification of the shape of the radiation belt as a function of the model coor-
dinates (e.g., E, K, Φ). Templates are generated by manually stitching together select datasets, mod-
els, and ad hoc extrapolations. The templates represent human input into the system, such as specify-
ing how the spectrum should fall off past the last energy channel. Because humans may be uncertain, 
or different humans may disagree, there are many templates for each subgrid within each model The 
templates do not specify an absolute flux level, but merely how flux varies across the model domain. 
The actual templates used in AE9/AP9 are described in the AE9/AP9 Tech Doc and O’Brien [2013]. 
The templates themselves are used only in developing the runtime tables; they are not used at run-
time, and so are not distributed with the model. A list of templates used for each model is provided in 
Appendix A. 

Templates are stored on disk in terms of the common log of flux (arbitrary units), but are used in the 
model as natural log flux (for compatibility with θ). The conversion is performed on load. In this 
report, we will denote an arbitrary template, in natural log flux, as θ(0). Since there are many templates 
for any given subgrid, we denote a particular template as θ(0,k). 

Every template will be used to fill in the entire flux map for every sensor for several instantiations of 
errors (10 bootstraps) in the original sensor θ, represented by local cov(δθ).  

First, at each grid point, we perturb the local 2-element θ using a random 2-element unit-normal per-
turbation η, processed through a conditioning matrix s. The conditioning matrix is nominally the 
square root of the local cov(δθ), except that the cov(δθ) is adjusted so that the variance (diagonal ele-
ments) are never less than 0.12; that is, the local error in θ is never allowed to be less than 10%. The 
perturbed θ is denoted θ’. 

 𝜃′ = 𝜃 + 𝑠𝜂 (25) 

 𝑠𝑠𝑇 = cov(𝛿𝜃) (26) 

This process is repeated at every grid point with a unique perturbation. 
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From this point forward, the filling in is done separately for θ1 and θ2, and it is assumed that θ2 has 
the same shape on the grid as a log flux would, even though it is not exactly a log flux. 

The next step is to perform a log-log interpolation from the sensor channel energies in θ’ to the grid 
energies at each spatial grid point (e.g., for each K,Φ pair). This applies only to energy grid points 
that are at or between the lowest and highest sensor channel energies. The low- and high-energy 
extrapolations are handled separately by adjusting either tail of the template spectrum to match the 
lowest/highest interpolated energy grid point. When only one energy channel is present, the template 
spectrum at the local grid point is log-log interpolated onto that one channel, and then the entire tem-
plate spectrum is adjusted up or down to match that interpolated value. In either case, the template 
shape is mainly used only for extrapolating the spectrum. At this point, at each spatial grid point, we 
either have no data or we have a complete spectrum (for the sensor we are working with). We will 
call this partially filled map θ’’. 

Spatial interpolation and extrapolation (e.g., in K,Φ) is considerably more complicated. First, we 
subtract the template we are using from the θ’’ to create a map of deviations: 

 Δ𝜃 = 𝜃′′ − 𝜃(0) (27) 

Then, we step through all the spatial grid points to find cases where there is no data from the sensor 
we are working with. At those “gaps” we compute a composite ∆θ’, which is the average of nearby 
∆θ. “Nearby” is defined in a Pythagorean sense, but on a transformed coordinate grid. Namely, grid 
coordinates (which are often transformed from the physical units, e.g., Φ is actually log10 Φ on the 
grid) are rescaled to cover the range from 0 to 1. The number of nearest neighbors used is scaled to 
1/7 the number of points on the reduced grid; this scale factor was arrived at through trial and error 
against human judgment of what was adequately smooth. The final, filled in map, is obtained by 
adding the template back to the composite ∆θ’. 

 𝜃′′′ = Δ𝜃′+ 𝜃(0) (28) 

This nearest-neighbors process ensures that there are no artificial spatial features added in at the inter-
faces between original and gap-filled points. The spatial filling in is depicted graphically in Figure 2. 

At this stage, for each sensor and for each template, we have many (10 bootstraps) completely filled 
in flux maps θ’’’. We will next combine these together to obtain a global best estimate flux map and 
to obtain the new local error in that filled flux map for each sensor. The best estimate θ for the sensor 
is obtained by computing an average over all templates and all bootstraps of θ’’’. The local error, 
again denoted cov(δθ), is computed as the covariance over all templates and all bootstraps of θ’’’. 
Now we have a filled-in flux map and its local error for each sensor. 

2.7 Combining Filled-in Maps and Estimating Global Errors (combinetheta) 
The many filled sensor-specific flux maps will be averaged together to obtain a best estimate of θ and 
its global error. 
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Figure 2. A graphical depiction of the spatial filling technique. 

 
The best estimate of θ is obtained by a weighted average of the individual sensor-specific θ. The 
weighting is given by the reciprocal of the diagonal elements of each local cov(δθ) (i.e., the weighting 
is inverse square of the local standard error). Thus, locally, sensors with large error (due either to 
measurement error, poor sampling, or lots of interpolation/extrapolation uncertainty) are weighted 
less than those with small error.  

This combination process allows some roughness, due to possible roughness in cov(δθ), and so an ad 
hoc smoothing is applied. The smoothing is defined by a 3-d smoothing mask. Smoothing parameters 
are given in Appendix B. 

Next, for AE9 and AP9 only, we “stitch” the K-hmin grid and the K-Φ grid together. This stitching 
process finds the grid interface at hmin = 1000 km, and adjusts the θ at all hmin for a given E,K to match 
the ratio of the θ value at 1000 km between the two grids. Because the relationship between Φ and 
hmin is epoch dependent, the stitching is done based on the epoch 1-Jan-2010 00:00:00 UTC. The 
adjustments are linear in θ, which means they are effectively multiplicative in flux. For K-hmin points 
where the K-Φ value does not exist (i.e., it is outside the grid), the corresponding K-hmin points are 
flagged for removal. (This stitching relegates the data used to populate the K-hmin grid to representing 
only the hmin gradients, and it will have to be replaced with something better in future versions.) 

Next, we determine the “activepoints” filter. For the plasma model, this filter simply removes any 
points for which there remains a bad data flag after all the filling and smoothing. For the radiation 
models, this filter also removes points whose median flux is less than an ad hoc factor (109 for AE9, 
1010 for AP9) less than the maximum median flux anywhere on the grid. These factors were estimated 
from corresponding values in AE8 and AP8. This filter is applied because some of the energy extrap-
olations lead to fluxes that are so small as to be neglected (or, simply, not credible given the limita-
tions of the measurements). The activepoints filter maps between the NExNred set of all q and the 

θ(0) template: 
one of several 

(e.g., from 
AP8)

θ from one 
data set (e.g., 

TSX-5)

∆θ from one 
data set

Smoothed 
∆θ from one 

data set
Smoothed θ

from one 
data set

• The ∆θ smoothing/filling algorithm is a 
nearest-neighbors average

• For each combination of template and 
sensor data set we make several filled-
in flux maps

• We bootstrap over templates, errors in θ
[cov(δθ)] and combinations of data sets 
to estimate the error in the filled-in flux 
map

• We combine these filled-in flux maps 
over all sensors to get a best estimate 
flux map and its errors (Sθ)
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Nact ≤ NExNred domain. Arrays active2all and all2active translate between these domains in the same 
ways as their counterparts for the reduced grid. 

Now we have our final theta (θ) for use in the runtime tables. The version of theta stored in the 
runtime tables is concatenated such that all elements of a subgrid are “unwrapped” to produce an 
Nactx2 matrix, and then each subgrid is stacked to produce a new, larger matrix, still with two 
columns. 

To compute Sθ (Stheta), which represents the global errors in θ, we repeat the entire process of build-
ing the flux map 50 times, but each time we resample the set of sensors used to compute the flux map 
and we perturb each θ using its local cov(δθ). This bootstrapping represents different combinations of 
sensor datasets, which captures the uncertainty that the model has with regard to adding new sensor 
data, and it represents the error in each dataset when combined with the others. We recognize that 
some sensors should be grouped together because they have the same host vehicle or are very similar 
in orbit, design, or calibration. The bootstrapping keeps those groups together. For example, CRRES 
MEA and HEEF should be kept together, as should all the LANL-GEO data. Initially, we concatenate 
the multiple estimates of θ into a large (Nactx2)x50 matrix Θ. We have to unwrap the individual Nactx2 
θ matrices by stacking the two original columns into a single column of Θ. The initial estimate of Sθ 
is then given by: 

 𝑆𝜃 = 1
√49

�Θ − Θ��. (29) 

Here Θ� is a matrix whose columns are the average of the rows of Θ. This relation gives 

 𝑆𝜃𝑆𝜃𝑇 = 1
49
�Θ − Θ�� �Θ − Θ��

T
, (30) 

which means that Sθ is the square root of the error covariance of θ, as estimated from 50 bootstrap 
samples.  The runtime algorithms will use this matrix to generate perturbations on θ in order to repre-
sent uncertainty in the flux maps. Those perturbations are generated from the square root of the error 
covariance matrix, just as we did with s in Eqs. (25) and (26). 

Next we “clip” this initial Sθ so that no entry is larger than ln(X)/2/√49, where X = 100 for AE9 and 
X=10 for all the other models. This imposes a maximum uncertainty on any flux as having a 95% 
confidence interval of a factor of X. 

Next, we compress Sθ using singular value decomposition. Any real matrix can be decomposed into a 
column space (and its null space), a set of singular values, and a row space (and its null space): 

 𝑆𝜃 = 𝑈𝑆𝑉𝑇 (31) 

 𝑈𝑈𝑇 = 𝑉𝑉𝑇 = 𝐼. (32) 
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The singular values are the diagonal elements of the diagonal matrix S. We are actually interested in 
the properties of 𝑆𝜃𝑆𝜃𝑇, which is: 

 𝑆𝜃𝑆𝜃𝑇 = 𝑈𝑆𝑆𝑇𝑈𝑇. (33) 

We can dispense with V entirely, and we can approximate 𝑆𝜃𝑆𝜃𝑇 by retaining only a subset of the 
singular values in S; namely, we retain enough diagonal elements of S to retain 90% of the variance 
(the sum of the squares of the diagonals of S). If the original Sθ is NSx50, and we retain only NS’ sin-
gular values, then S’ is NS x NS’, and so is Sθ’: 

 𝑆′𝜃 = 𝑈𝑆′. (34) 

Typically, this compression requires only about 10 columns in Sθ’ rather than 50 in Sθ. The compres-
sion saves substantially (~80%) on disk space and memory because Sθ is by far the largest item used 
by the runtime tables. 

Finally, we clip Sθ’ again, using the same value of X as above to ensure that the compression did not 
introduce any new, very large errors. 

This completes the calculation of the flux map θ and its global error Sθ for the runtime tables. Figure 
3 shows several diagnostics of the process described above. 
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Figure 3.  A "binspectra"  figure for AE9V10 on the K-Φ grid. It shows the median and 95th percentile 

flux (left) for every sensor data set (colored thin curves) and for the model fit (thick gray 
curves) in the selected K-Φ bin. Error bars are shown as dotted lines. Original sensor data in 
the bin is shown with symbols. Energies that are removed in the bin for low flux are marked 
with black asterisks. On the top right is a set of bin identification information as well as 
color contours of the log10 median and 95th percentile flux at the selected energy. The 
atmospheric loss cone is identified on the 95th percentile flux map. At bottom right are all 
the templates used, normalized to have a value of 1 at 3 MeV in this bin. 
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3.  Time Evolution Matrices 

O’Brien [2012a, hereafter TOR-2012(1237)-3] presents the equations that govern time evolution in 
AE9 and AP9 Monte Carlo scenarios. That evolution is controlled by a set of principal component 
amplitudes:  

 �⃗�𝑡 = ∑ 𝐺𝑖
𝑁𝐺
𝑖=1 �⃗�𝑡−𝜏𝑖

𝑇 + 𝐶𝜂𝑡+𝛿𝑡. (35) 

There are NG lag persistence factors, and at each time step there is a unit Gaussian white noise inno-
vation η (a series of uncorrelated Gaussian random variables with mean zero and unit variance). The 
G and C matrices condition the persistence and innovation, respectively. The τi are prescribed integer 
multiples of the fundamental time step δt. 

To derive G and C according to TOR-2012(1237)-3, we need to obtain from the data spatial covari-
ance matrix across the entire grid, and spatiotemporal covariances (lag covariances) on a decimated 
grid.  The time lags that we will need correspond to the unique set of time offsets between every time 
lag used in the time evolution equation. For example, an equation that involved states at times 1, 3, 
and 6 would require covariances at lags of 2 (= 3-1), 3 (=6-3), and 5 (= 6-1). 

A (lag) covariance is defined as  

 𝑅�𝑀 = 〈𝑧𝑡𝑧𝑡−𝑀𝛿𝑡𝑇 〉 = 𝑅�−𝑀𝑇 , (36) 

where z is a vector of normalized fluxes over an entire subgrid. The normalization is such that all the 
time-averaged points within a bin are replaced according to: 

 𝑧𝑖 = Φ−1 � i
N+1

�, (37) 

where i represents the order the point would have in a sorted list such that z1 replaces the smallest 
flux, and zN replaces the largest. Thus, with a bin, the set of z’s has a Gaussian distribution with mean 
0 and variance 1. The time offset is M time steps of size δt, and the angle brackets represent an aver-
age, effectively an average over time. For M=0, we have the spatial covariance matrix Σ: 

 𝑅�0 = 〈𝑧𝑡𝑧𝑡𝑇〉 = Σ = QQT. (38) 

The matrix Q defines the relationship between the principal component amplitudes q’s and the z’s: 
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 𝑧𝑡 = Q�⃗�𝑡 (39) 

Like the z’s, the q’s are Gaussians with zero mean and unit variance. 

3.1 Computing Spatial (calccov covs) and Lag Correlations (calccov lagcovs) 
We first build a database of covariances at various lags. We do this by repeatedly selecting two spa-
tial bins at random from two randomly selected sensors, and a random energy channel for each sen-
sor. We then find the intersection of the binavg data in the first bin with binavg data in the second bin 
at the appropriate lag. If there are enough intersecting points (100), we compute a covariance between 
the z’s for two datasets and store it in a database for that lag. We repeat this until we have 3 x 105 
points for the spatial covariance and 104 points for each lag covariance (we will see below why we 
need far less lag covariance information because of the principal component transform). 

For spatial covariance (lag zero), we also do this across subgrids, where we select one point from the 
primary subgrid (K-Φ) and one from the subordinate subgrid (K-hmin).  

3.2 Filling in the Spatial Covariance Matrix (makecov cov) 
With on the order of 104–105 grid points per subgrid, the full covariance matrix Σ is huge. Further, as 
we will see below, it contains a lot of “noise” correlations that we will not retain anyway, and we do 
not have enough simultaneous data to actually constrain such a huge covariance matrix. Therefore, to 
keep compute times to a reasonable level, we decimate the spatial subgrids for computing the spatial 
covariance matrix. This has the effect of reducing the fine detail of the spatial correlation structure, 
but that is the part we believe is least credible given the limitations of our observations. We decimate 
the subgrid iteratively over the three dimensions, increasing the decimation factor from 1 (meaning 
keep all points in that dimension) to 2 (meaning skipping every other point), etc. The dimension that 
is decimated is whichever is longest given the decimation up to that point. We iterate this process 
until the implied covariance matrix has less than about 200 million entries. Typically, the energy 
dimension is not decimated, while each spatial dimension is decimated by a factor of 2. Special care 
is taken to retain the end points of decimated dimensions. 

Next, we obtain all the covariances from the lag-zero database. We are going to use a nearest-
neighbors averaging to populate the covariance matrix on the decimated grid. First, we rescale their 
coordinates of the points in the database. The energy dimension is scaled first with a logarithm, and 
then linearly scaled to span 0 to 1. The spatial dimensions are simply linearly scaled to span 0 to 1 
(although this already includes the coordinate transforms inherent in the grid, such as taking the loga-
rithm of Φ). 

If we are working with the primary grid, then we are creating a symmetric, square matrix, and we can 
save calculations by only doing the diagonal and one triangle, and copying the results to the other 
triangle. 

To compute a point in one of the covariance matrices, we average the 100 nearest neighbors of that 
point’s grid coordinates with the neighbors selected from the database for that lag. The set of nearest 
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neighbors is determined by Pythagorean distance in the rescaled coordinates domain (a hypercube 
from 0 to 1 in 6 dimensions).  

It is worthwhile to note how the subgrids relate to each other. If we have two subgrids, the covariance 
matrix Σ can be represented in block matrix notation as: 

 Σ = �
Σ11 Σ12
Σ12𝑇 Σ22

�, (40) 

where Σ11 is the spatial covariance matrix on subgrid 1, Σ22 is the spatial covariance matrix on subgrid 
2, and Σ12 is the spatial covariance matrix between subgrids 1 and 2. We will see below that we only 
need the column for the primary grid, which in the case of AE9 and AP9 is subgrid 2 (K-Φ). Thus, we 
only need Σ12 and Σ22. 

3.3 Computing Principal Components (makeQ) 
The principal components that drive the Monte Carlo scenarios are related to the spatial covariance 
according to Q (suppressing the subgrid subscripts for the moment): 

We determine Q via eigenvalue decomposition of Σ: 

 Σ = VΛVT (41) 

 VVT = 𝐼, (42) 

where the eigenvalues are the diagonal elements of the diagonal matrix Λ. We only retain enough 
entries in Λ such that QQT represents most of the variance in Σ. The decision on how many entries in 
Λ to retain is based on two criteria: we remove all entries in Λ that represent less than 1% of the vari-
ance in Σ. Because of numerical limitations, we also ensure that we stop retaining entries in Λ after 
we have stored more variance than exists in Σ (this happens because sometimes Λ has negative 
entries, which are numerical noise). We compute a preliminary Q from the truncated Λ’ as: 

 Q = V�Λ′. (43) 

While Q has as many rows as there are grid points, it typically only has about 10 columns; thus, all 
the temporal variation is controlled by changing amplitudes about 10 principal components q of spa-
tial variation. The columns of Q are the principal components of spatial variation on the decimated 
(primary sub)grid. 

The expressions for Q above give the principal components on the decimated primary subgrid. To 
obtain Q for a decimated subordinate grid, we have to relate Q to Σ12 via Σ22 (when the primary sub-
grid is number 2). Specifically: 
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 Σ = �
Q11

Q22
� �

Q11

Q22
�

𝑇

= �
Q11Q11

T Q11Q22
T

Q22Q11
T Q22Q22

T � = �
Σ11 Σ12
Σ12𝑇 Σ22

�. (44) 

Thus: 

 Q11Q22
T = Σ12, (45) 

which means 

 Q11 = Σ12Q22
−T. (46) 

The matrix Q22
-T is computed as the transpose of the pseudoinverse of Q22 (again, via singular value 

decomposition). This approach allows a single set of principal components on the primary subgrid to 
drive temporal variation on both subgrids via Q11 and Q22. 

Next, we interpolate the Q’s from the decimated subgrids to the full subgrids. We then rescale the 
rows of Q for each subgrid such that each has a sum-of-squares that is 1—this is important, as it guar-
antees the validity of the statistical transforms from q to z retain the property that z has zero mean and 
unit variance, which, in turn, guarantees that the flux x, when produced from z according to Eq. (16) 
or Eq. (24) has the right distribution.  

The remainder of the operations can be computed only on the primary subgrid since the fluxes on the 
subordinate subgrid can be computed from the same q used on the primary grid. 

3.4 Filling in Lag Correlation Matrices (makecov lagcov) 
As described in TOR-2012(1237)-3, we can compute the lag covariance matrices on a further deci-
mated grid. We select the points in the new decimated grid at random from the original undecimated 
grid. The number of points is the larger of 5Nq

2 and 50Nq, where Nq is the number of principal com-
ponents. We then proceed through this new decimated grid to compute all the needed lag covariance 
matrices using the same nearest neighbors strategy used for the spatial covariance matrix in Subsec-
tion 3.2. 

3.5 Computing Time Evolution Matrices (buildmc) 
The equations and algorithms for computing G and C in Eq. (35) from the R’s are given in TOR-
2012(1237)-3 and will not be repeated here (they are complicated). 

Once the Q’s, G’s, and C are computed, we can save the entire set of runtime tables to a single file, 
such as AE9V10_runtime_tables.mat, which is both a Matlab save set and an HDF5 file. 
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4.  Diagnostic Figures (figs) 

A large number of diagnostic figures are generated. Manually browsing this set is a required visual 
validation of the model. Further empirical validation is performed by comparison to other datasets 
and models [AE9/AP9 Validation Doc]. 

Briefly, the diagnostic figures are: 

thetafigs Theta maps, i.e., flux maps, for each sensor 
filledthetafigs Theta maps, filled, for each sensor 
fluxmaps Flux maps for combined model 
binspectra Energy spectra & fit in spatial bins (similar to Figure 3) 
pcfigs Principal Components figures 
radial_profile Equatorial radial profiles vs AE8/AP8 
SAA_profile SAA latitude profiles vs AE8/AP8 
FieldLine_profile Field line profiles vs AE8/AP8 
LEO_map Flux contour at multiple altitudes 
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Appendix A—Templates Used in Each Model 

• AE9 Templates for K-Φ grid 
o AE9_crrespoststorm$X_kf$Yphif$Z_KPhi_V3.mat  

 $X = 50, 95 
 $Y = 25, 30, 35 
 $Z = 15, 17, 19 

o AE9V10_ae8$X_KPhi_PLn$Y_extrap$Z.mat 
 $X = min, max 
 $Y = 3, 5, 8 
 $Z = 1, 2, 3,…, 9 

• AE9 Templates for K-hmin 
o AE9V10_ae8$X_Khmin_PLn$Y_extrap$Z.mat 

 $X = min, max 
 $Y = 3, 5 
 $Z =  1, 2, 3,…, 9 

• AP9 Templates for K-Φ grid 
o AP9V10_ICT_KPhi_$Xpctl_v3_lo$Y_hi$Z.mat 

 $X = 25, 50, 75, 95 
 $Y = 07, 10, 15 
 $Z = 25, 40 

o AP9V10_ICT_KPhi_$Xpctl_v3_nom.mat 
 $X = 25, 50, 75, 95 

• AP9 Templates for K-hmin grid 
o AP9V10_SCT_KHmin_$Xpctl_bca_PLn$Y.mat 

 $X = 25, 50, 75, 90 
 $Y = 3, x 

• SPME Templates for αeq-Lm grid 
o hydra2011_e_$X_pl$Y_$Zpctl.mat 
o $X = alls, dawn, dusk, mdnt, noon 
o $Y = 10, 20, 30, 40 
o $Z = 50, 75, 95, mean 

• SPMH Templates for αeq-Lm grid 
o milillo2001_h_$X.mat 

 $X = alls, dawn, dusk, mdnt, noon 
o $X_h_$Y_$Z.mat 

 $X = roeder2005, niehof2011 
 $Y = alls, dawn, dusk, mdnt, noon 
 $Z = 50pctl, 75pctl, 95pctl, mean 

• SPMHE Templates for αeq-Lm grid 
o $X_he_$Y_mean.mat 

 $X = roeder2005, niehof2011 
 $Y = alls, dawn, dusk, mdnt, noon 
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• SPMO Templates for αeq-Lm grid 
o niehof2011_o_$X_mean.mat 

 $X = alls, dawn, dusk, mdnt, noon 
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Appendix B—Smoothing parameters 

For each grid or subgrid a 3-D smoothing mask is defined. The mask defines relative weights for a 
local average, and the extent of the local average is given by the size of the mask in each dimension 
(i.e., the window size). Except where noted, equal weight is given to all points within the window. 

• AE9 
o E = 3, K = 7, Φ = 5 
o E = 3, K = 3, hmin = 10 

• AP9 
o E = 3, K = 3, Φ = 5 
o E = 3, K = 5, hmin = 5 

• SPME, SPMH, SPMHE, SPMO 
o E = 3, αeq = 3, Lm = 3* 
o (*Note Lm weighting is only 30% for neighbors) 
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