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PHYSICAL SCIENCES LABORATORIES 

The Aerospace Corporation functions as an “architect-engineer” for national security programs, 
specializing in advanced military space systems.  The Corporation's Physical Sciences Laboratories 
support the effective and timely development and operation of national security systems through 
scientific research and the application of advanced technology.  Vital to the success of the Corporation 
is the technical staff’s wide-ranging expertise and its ability to stay abreast of new technological 
developments and program support issues associated with rapidly evolving space systems.  
Contributing capabilities are provided by these individual organizations: 

 
Electronics and Photonics Laboratory:  Microelectronics, VLSI reliability, failure 
analysis, solid-state device physics, compound semiconductors, radiation effects, 
infrared and CCD detector devices, data storage and display technologies; lasers and 
electro-optics, solid-state laser design, micro-optics, optical communications, and fiber-
optic sensors; atomic frequency standards, applied laser spectroscopy, laser chemistry, 
atmospheric propagation and beam control, LIDAR/LADAR remote sensing; solar cell 
and array testing and evaluation, battery electrochemistry, battery testing and 
evaluation. 
 
Space Materials Laboratory:  Evaluation and characterizations of new materials and 
processing techniques:  metals, alloys, ceramics, polymers, thin films, and composites; 
development of advanced deposition processes; nondestructive evaluation, component 
failure analysis and reliability; structural mechanics, fracture mechanics, and stress 
corrosion; analysis and evaluation of materials at cryogenic and elevated temperatures; 
launch vehicle fluid mechanics, heat transfer and flight dynamics; 
aerothermodynamics; chemical and electric propulsion; environmental chemistry; 
combustion processes; space environment effects on materials, hardening and 
vulnerability assessment; contamination, thermal and structural control; lubrication and 
surface phenomena.  Microelectromechanical systems (MEMS) for space 
applications; laser micromachining; laser-surface physical and chemical interactions; 
micropropulsion; micro- and nanosatellite mission analysis; intelligent 
microinstruments for monitoring space and launch system environments. 
 
Space Science Applications Laboratory:  Magnetospheric, auroral and cosmic-ray 
physics, wave-particle interactions, magnetospheric plasma waves; atmospheric and 
ionospheric physics, density and composition of the upper atmosphere, remote sensing 
using atmospheric radiation; solar physics, infrared astronomy, infrared signature 
analysis; infrared surveillance, imaging and remote sensing; multispectral and 
hyperspectral sensor development; data analysis and algorithm development; 
applications of multispectral and hyperspectral imagery to defense, civil space, 
commercial, and environmental missions; effects of solar activity, magnetic storms and 
nuclear explosions on the Earth’s atmosphere, ionosphere and magnetosphere; effects 
of electromagnetic and particulate radiations on space systems; space instrumentation, 
design, fabrication and test; environmental chemistry, trace detection; atmospheric 
chemical reactions, atmospheric optics, light scattering, state-specific chemical 
reactions, and radiative signatures of missile plumes. 
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Abstract 

This report describes the algorithms employed by the AE9/AP9/SPM V1.0 runtime 
library to compute radiation and plasma environments. The algorithms can be used to 
generate mean, percentile, perturbed mean, and dynamic scenario environments. The 
algorithms populate the desired global environment on the model grid, evolve it for-
ward in time as needed, and project it onto the times, locations, energy, and angular 
channels requested by the user. 
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1.  Introduction 

This introduction provides a high-level description of the AE9/AP9/SPM runtime algorithms (AE9 is 
energetic electrons, AP9 is energetic protons, and SPM is a set of models for different species of 
plasma, electrons, protons/hydrogen, oxygen, and helium). These algorithms are an evolution of those 
used in prior alpha and beta versions of AE9/AP9 [see, e.g., O’Brien, 2005; O’Brien, 2007; O’Brien 
and Guild, 2010] and have been summarized in Ginet et al. [2013]. Later sections will repeat this 
information in more detail with equations and mathematical notations. The runtime algorithms gener-
ate mean, percentile, and static perturbed mean radiation and plasma environments, as well as 
dynamic Monte Carlo scenarios of the radiation environment. In the case of the mean and percentile 
environments, the parameters of the statistical distribution at each grid point are given by unperturbed 
parameter maps. At each grid point, the parameter map provides a two-element vector that can be 
converted to the median and 95th percentile of the local statistical distribution. The median and 95th 
percentile can then be converted to the parameters of either a Weibull or log-normal statistical distri-
bution. With those parameters, the mean or any percentile can be computed. The AE9 electron model 
uses a Weibull distribution, while the AP9 proton model and the plasma models use log-normal dis-
tributions. In the case of the perturbed mean static environments and the dynamic Monte Carlo envi-
ronments, the unperturbed parameter map is perturbed using an anomaly matrix to obtain a different, 
perturbed parameter map for each scenario. The perturbations are uniquely identified by a random 
number seed, which is the scenario identifier (ID) number 1 through 999. The anomaly matrix repre-
sents the uncertainty in the parameters of the statistical distributions, including sensor response 
uncertainties, limited duration of sampling missions, counting statistics, and spatial extrapolation/ 
interpolation. 

For the dynamic Monte Carlo environments, an initial random state is generated and evolved forward 
in time for many iterations to ensure that proper temporal correlations are established before the mis-
sion simulation begins. Time evolution is achieved by a multi-lag, multivariate auto-regressive pro-
cess, whose time evolution matrices (persistence and innovation conditioning matrices) are derived 
from observed spatiotemporal correlations, and the innovations themselves are again keyed to a ran-
dom number seed corresponding to the scenario ID. The state vector itself is a reduced ~10-element 
vector of principal component amplitudes. The relationship between the principal component ampli-
tudes and the flux level at any given grid point is provided by principal component matrices that are 
square-root matrices of a specialized spatial covariance matrix. In fact, the spatial covariance matrix 
is computed not from the fluxes, but from the fluxes converted to standard Gaussian variables. All of 
the multivariate linear time iteration operations retain the Gaussian nature of the data, and also pre-
serve the zero mean and unit variance of a standard Gaussian. Thus, one must convert from the stand-
ard Gaussian to the local Weibull or log-normal statistical distribution to obtain flux at each grid 
point.  

With flux given at each grid point, one must then compute the requested particle fluxes at the space-
craft location. For unidirectional differential fluxes, the computation is simply linear interpolation 
from the grid onto the local magnetic coordinates. However, for more commonly requested omnidi-
rectional and/or integral fluxes, the computation may also involve integrating over the local magnetic 
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coordinates. Angular integrals to obtain omnidirectional flux are conducted in terms of local pitch 
angle, assuming symmetry around the local magnetic field direction. 

The particle flux in each desired energy channel is computed at each point along the spacecraft tra-
jectory, thus providing a simulation of what one would measure with an idealized particle sensor. For 
the static environments, and often for the dynamic environments, time variation is due mainly to 
motion of the spacecraft and to a lesser extent to motion of the model currents inside and outside the 
Earth. However, over time, the dynamic environments will explore a larger range of variation than 
what appears in the static environment due simply to spacecraft motion. 

The simulated sensor data can be fed into an effects code to compute the outcome of radiation or 
plasma interactions with matter, parts, or systems. For effects due only to whole-mission linear accu-
mulation (average, fluence, dose), the mean and perturbed mean static environments can be used, and 
can be run for only a representative time sample (either a few orbits, or a set of times randomly but 
uniformly distributed over the course of the mission). For effects that depend on the instantaneous 
particle flux (single-event effects, dose rate) or time history of particle flux (internal charging), the 
dynamic Monte Carlo scenarios must be used. Running full mission simulations can be so time con-
suming and can produce so much raw flux data that they can be a burden even to mid-range compu-
ting clusters and mass storage.  

To obtain statistical confidence intervals, one must run multiple scenarios of either the static per-
turbed means or the dynamic Monte Carlo scenarios, compute the required effects from the fluxes, 
and then compute statistical distributions of those effects. Computing effects from percentiles of 
fluxes will likely lead to incorrect results because the calculation of percentiles is a nonlinear opera-
tion (sorting), even if the effects themselves are linearly dependent on the flux. 

In the remainder of this document, we will describe the algorithms and equations in detail. 
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2.  Runtime Tables 

The AE9/AP9 model depends on several databases of runtime tables. Each model AE9, AP9, SPMH, 
SPME, SPMO, and SPMHE has a model-specific database with a name like 
AE9V10_runtime_tables.mat. These are binary Matlab save sets and conform to the HDF5 format 
standard (Matlab is a trademark of The Mathworks, Inc.). There are also support databases, e.g., the 
coefficients of the International Geophysical Reference Field (IGRF) model [Finlay et al., 2010]. The 
contents of a model-specific database are identified in Table 1. Each quantity in the table will be used 
in the later sections of this document. Another report [see O’Brien, 2013] describes the statistical 
manipulations required to generate each quantity. 

Table 1. Main Quantities in Each Model-Specific Runtime Tables Data File 
Quantity Variable Name Symbol Size Purpose 

Parameter map theta θ ~20,000* x 2 Represent the transformed 50th and 95th 
percentile flux on the coordinate grid 

Anomaly matrix Stheta Sθ ~40,000† x ~10 Represents error covariance matrix for 
θ due to measurement errors 

Principal Component 
Matrix‡ 

Q Q ~20,000* x ~10 Represents the principal components of 
spatial variation 

Time Step‡ dt δt Scalar  
Persistence Matrix‡ G G ~10 x 10 x ~5 Represents persistence of principal 

component amplitudes 
Innovation 
Conditioning Matrix‡ 

C C ~10 x 10 Allocates white noise driver to principal 
components 

Conditioning Time‡ conditioning_time N/A Scalar Specifies length of conditioning time 
needed to initialize state history 

Grid grid N/A (structured) Stores information about the grid 
*20,000 includes two grids and is appropriate for AE9 and AP9. SPM models are smaller 
†40,000 includes two entries for each grid point 
‡Monte Carlo quantities are not defined for the plasma (SPM) models. 
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3.  Magnetic Coordinates Grid 

The AE9/AP9 Tech Doc provides a detailed discussion of the drift and bounce invariant coordinate 
systems used in the component models of AE9/AP9/SPM. Here, we will just provide a short review 
of the coordinate systems and then describe how they are used at runtime. The specific coordinate 
identities, ranges, and resolutions are given in Table 2. 

The radiation belt models, AE9 and AP9, actually use two grids. The high-altitude grid uses energy 
(E), Kauffman’s K, and the third adiabatic invariant or flux invariant Φ. The low-altitude grid uses E, 
K, and the minimum altitude encountered on a drift orbit (hmin). It should be noted that K and hmin are 
drift invariants but not adiabatic invariants (i.e., they are constant only in a static magnetic field). 

The plasma models (SPM) use E, equatorial pitch angle (αeq), and McIlwain L (Lm) coordinates. 
Equatorial pitch angle is a bounce invariant, not a drift invariant, but was selected for historical rea-
sons. It should be noted that the plasma particles respond to the global electric field strongly enough 
that their magnetic coordinates are not drift invariant anyway (a set of electromagnetic coordinates 
would be required). 

The grid variable in the model-specific runtime tables provides all the information from Table 2, 
including identity of the coordinates, their units, ranges and resolutions, and any transforms needed 
(such as exponentiation or logarithms). 

For AE9 and AP9, the runtime tables combine the parameter maps (θ) and the principal components 
matrix Q for the high- and low-altitude grids by “stacking” them, or concatenating them along the 
first dimension. For Sθ a second stacking is done with respect to θ1 and θ2. The runtime code keeps 
track of this stacking with help from parameters stored in the grid variable. 

Because (as we will see later) the model formulation can represent only non-zero fluxes, zero fluxes 
are achieved by removing points from the model grid. This is done in two stages: first, an atmospheric 

Table 2. Grids for AE9/AP9/SPM V1.0 Models 

Model Species Energy 
High Altitude Grid Low Altitude Grid 

2nd Inv. 3rd Inv. 2nd Inv. 3rd Inv. 
AE9 e- 0.04–10 MeV 

21 channels 
0 ≤ K1/2 ≤ 4.5 
∆(K1/2) = 0.1 

K~G1/2RE 

0.8 ≤ log10Φ ≤ 0.3 
∆(log10Φ) = 0.025,  

Φ~G RE
2 

0 ≤ K1/2 ≤ 4.5 
∆(K1/2) = 0.1 

K~G1/2RE 

-500 < hmin < 1000 km 
∆hmin = 50 km 

AP9 H+ 0.1–400 MeV 
22 channels 

0 < hmin < 1000 km 
∆hmin = 50 km 

SPME e- 1–40 keV 
16 channels 

5≤ αeq ≤ 85o 

∆αeq=10o 
2≤ Lm ≤ 10 
∆Lm=0.5 

N/A 

SPMH H+ 1.15–164 keV 
12 channels SPMHE He+/++ 

SPMO O+/++ 
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loss cone is defined and used to remove points based on a relationship between the 2nd and 3rd coordi-
nates. This loss cone filter is independent of energy and flux intensity. The second filter is determined 
during the statistical processing of the data [see O’Brien, 2013], and it removes points where the 
median flux is smaller than the maximum flux by a specified ratio. For AP9, this ratio is 10–10; for the 
other models, the ratio is 10–9. Thus, the second filter is energy and intensity dependent. The lists of 
which grid points are involved in each filter are provided as part of the grid variable in the model-
specific runtime tables. 

Finally, the grid variable includes a set of “linear basis functions” that represent the lower, middle, 
and upper end points. These basis functions are tracked separately for Energy as opposed to the 2-D 
spatial region covered by the 2nd and 3rd invariants. The lower and upper bounds are defined to 
account for different kinds of grid boundaries when performing grid interpolations: no flux is allowed 
below K = 0, below the lowest energy grid point, or in the loss cone. At runtime, there is then no need 
to consult the definitions of the boundaries, instead relying on the lower and upper bounds for each 
grid point. 

Because the grid variable is simply a saved version of the Matlab object used to define the grid for all 
the backend processing, it contains many vestigial entries that are not used at runtime. In a later ver-
sion of the model, we may remove the items from the file to reduce potential for confusion. 
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4.  Populating a Requested Global State 

For each model, the parameter maps (θ) provide the median (m50) and 95th percentile (m95) flux at 
each grid point. At each grid point, the map provides two values θ1 and θ2 such that: 

 𝑚50 = 𝑒𝜃1 (1) 

 𝑚95 = 𝑒𝜃1 + 𝑒𝜃2 (2) 

This transform ensures that any pair of real values for θ1 and θ2 will give m95 > m50 > 0. With the two 
percentiles in hand, one can derive the standard parameters of either the Weibull (used for AE9 elec-
trons) or Log Normal distribution (used for everything else), and thereby compute any desired statis-
tical property (usually the mean or a chosen percentile) of the flux at that grid point. 

The cumulative distribution function for the Weibull is given by 

 𝐹(𝑥) = 1 − exp [−(𝑥 𝑥0⁄ )𝛾], (3) 

and the parameters are related to the 50th and 95th percentiles by 

 𝛾 = �ln ln 20
ln2

� �ln ln𝑚95
ln𝑚50

��  (4) 

 𝑥0 = 𝑚50
(ln2)1 𝛾⁄ . (5) 

The cumulative distribution function for the Log-Normal is given by 

 𝐹(𝑥) = Φ�ln𝑥−𝜇
𝜎

�, (6) 

where Φ is the cumulative distribution function for the unit normal or standard Gaussian. The param-
eters of the Log Normal are related to the 50th and 95th percentiles by: 

 𝜇 = ln𝑚50 (7) 

 𝜎 = ln𝑚95−𝜇
Φ−1(0.95). (8) 
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4.1 Mean 
To populate the global state for a run through the mean environment, the θ parameters are used to 
compute m50 and m95 at each grid point according to the formulae above, and then the following for-
mulae are applied to compute the mean at the grid point: 

 〈𝑥〉 = 𝑥0Γ(1 + 1 𝛾⁄ ) (Weibull), (9) 

 〈𝑥〉 = exp[𝜇 + 𝜎2 2⁄ ] (Log Normal), (10) 

where <> represents the population mean or average, and Γ is the complete Gamma function. 

4.2 Percentiles 
When a given percentile flux map is requested, it is rescaled onto the [0,1] domain by the variable u. 
At each grid point, θ is converted to the parameters of the relevant cumulative distribution, and the 
flux is then given by the inverse of the cumulative distribution function F given above 

 𝑥 =  𝐹−1(𝑢). (11) 

4.3 Perturbed Mean 
The perturbed mean uses the same formulae to compute the mean as does the unperturbed mean. 
However, it uses a perturbed parameter map. To distinguish the unperturbed and perturbed maps, we 
add the superscript (0) to the parameter map: θ(0). The perturbation is computed from Sθ, which we 
will treat as a matrix, and we will treat θ(0) and θ as vectors. The parameter map perturbation equation 
is then given in linear algebra notation as: 

 𝜃 = 𝜃(0) + 𝑆𝜃𝜀 (12) 

Where 𝜀 is a vector of uncorrelated uniform random variables distributed evenly between −√3 and 
+√3. This distribution has zero mean and unit variance, but, unlike the unit normal, it has finite 
bounds. It is, therefore, the case that the global error covariance of the parameter map is given by: 

 cov�𝜃 − 𝜃(0)� = 〈�𝜃 − 𝜃(0)��𝜃 − 𝜃(0)�
𝑇
〉 = 𝑆𝜃〈𝜀𝜀𝑇〉𝑆𝜃𝑇 = 𝑆𝜃𝑆𝜃𝑇 (13) 

This equation directly ties the runtime perturbations to the pre-computed errors in the parameter map 
θ via Sθ. 

The perturbed parameter map can then be used along with equations from Subsection 4.1 to compute 
the perturbed mean flux at every grid point. 

We note that the random number generator used to produce 𝜀 is seeded with the scenario ID number, 
1–999. 
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4.4 Monte Carlo Scenarios 
To create a Monte Carlo scenario, one begins by perturbing the parameter map according to Eq. (12). 
Next, one must initialize the dynamic state of the radiation belts using a state history matrix. The state 
history is initialized to a series of vectors �⃗�𝑡 of Gaussian white noise (uncorrelated unit normal ran-
dom variables). Then, for a model-dependent conditioning time [see O’Brien, 2012], the state history 
is updated using the autoregressive equations: 

 �⃗�𝑡 = ∑ 𝐺𝑖�⃗�𝑡−𝜏𝑖
𝑁𝐺
𝑖=1 + 𝐶𝜂𝑡, (14) 

where the G and C matrices and 𝜏𝑖 are part of the runtime tables, and 𝜂𝑡 is a series of Gaussian white-
noise vectors. Through a set of relationships given in O’Brien [2012] the G and C matrices tie the 
sequence of �⃗�𝑡’s to the observed spatiotemporal correlations of the fluxes. After advancing Eq. (14) 
for the prescribed conditioning time, the state history is expected to represent the spatiotemporal lag 
correlations in the associated radiation belts. However, �⃗�𝑡 is only a small state vector, and it must be 
converted into flux on the model grid via a three-step process. 

The first step in converting the state vector into flux is expanding it onto the model grid. The state 
vector �⃗�𝑡 is actually a vector of amplitudes of a set of principal components of spatial variation. The 
principal component matrix Q (provided in the runtime tables) converts from the state vector to the 
normalized fluxes 𝑧𝑡: 

 𝑧𝑡 = 𝑄�⃗�𝑡. (15) 

By construction, each q and each z has a long-term statistical distribution that is also a unit normal, 
and the q’s are uncorrelated with each other. Thus, the spatial covariance of the normalized fluxes is 
given by: 

 Σ = cov(𝑧𝑡) = 〈𝑧𝑡𝑧𝑡
𝑇〉 = 𝑄〈�⃗�𝑡�⃗�𝑡

𝑇〉𝑄𝑇 = 𝑄𝑄𝑇. (16) 

This equation directly ties the observed spatial covariance (Σ) of the normalized fluxes to the dynamic 
states generated by the Monte Carlo scenarios. 

The second and third steps un-normalize each of the z’s. The second step converts each z into its cor-
responding probability level u on the [0,1] domain, according to: 

 𝑢 = Φ(𝑧). (17) 

The final step is to convert each u into a flux using the inverse of the cumulative distribution function 
at the grid point, i.e., using the same procedure in Subsection 4.2. 

The global Monte Carlo state advances in time according to the time step in Table 3 and Eq. (14).  
The conversion from �⃗�𝑡 to flux is performed at each grid point at each time step. 
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Table 3. Monte Carlo Parameters for AE9 and AP9 
Monte Carlo Parameter AE9 AP9 

Number of Principal Components (Nq) 8 9 
Number of persistence matrices (NG) 6 4 
time step (δt, days) 1 7 
Time lags (τiδt, days) 1, 7, 14, 27, 183, 365 7, 28, 182, 364 
Conditioning time (days) 1253.1 1503.5 

 
We note that the random number generator used to initialize the state vector history �⃗�𝑡 and to produce 
𝜂𝑡 is seeded with the scenario ID number, 1–999. Also, the perturbed parameter map is the same one 
produced for the same scenario ID number for a perturbed mean state, i.e., in Subsection 4.3. 
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5.  Projecting the Environment onto the Spacecraft 

5.1 Fast Coordinates 
For the drift invariants, Φ and hmin, the full coordinate calculation in the Olson-Pfitzer quiet field 
[Olson and Pfitzer, 1977] is too slow even on modern computers to be practical to do on demand in 
an interactive application for any significant number of telemetry points. We solve this problem by 
using a fast field-line tracer [Pfitzer, 1991; 1995] and separate neural networks trained on previously 
computed databases of either Φ or hmin. The neural networks are trained to be high-precision 
replacements for the full drift trace. In addition, we introduced algorithms to identify and exclude 
Shabansky (bifurcated) drift orbits, as well as identifying points that are outside the domain of the 
model (which a drift shell integral would reveal, but which a neural network would mistake for valid 
inputs). The details of this technique are given in O’Brien and Huston, 2013. 

We note that the use of neural networks to avoid the full drift invariant calculation was developed 
simultaneously by our partners at Los Alamos National Lab for a dynamic external field model 
[Koller et al., 2009; Koller and Zaharia, 2011]. Our networks are similar in concept. However, they 
address a simpler, quiet magnetic field model but have had to meet tighter requirements in terms of 
error performance and boundary definitions. 

5.2 Interpolation onto Target Magnetic Coordinates 
An essential step in determining the requested flux at the spacecraft location is determining the differ-
ential, unidirection flux at a specific energy and direction of incidence at the spacecraft location. For 
V1.0, we do not account for finite gyroradius effects (such as the East-West effect). The model pro-
vides the differential, unidirectional flux in #/cm2/sr/s/MeV on a grid in drift invariants. Interpolation 
is performed in a linear sense onto a grid of local coordinates, i.e., local pitch angles. Using our fast 
coordinate calculators, we can quickly obtain K, hmin, Φ, or Lm, or αeq for any given location and 
direction. In the case of the AE9 and AP9 models, we begin with K, hmin, and determine whether the 
requested point falls within the low-altitude grid. If so, we proceed with the interpolation using the 
low-altitude grid. If not, we compute Φ and determine whether the point falls in the high-altitude grid. 

Regardless of which coordinate grid we use, we compute the weights used for a linear interpolation as 
if we are multiplying the entire global state by a vector of weights (v). Of course, because only a 
small number of grid points is actually used to interpolate to a desired target location/direction, the 
weights are very sparse. The linear interpolation is performed in terms of the product of separate 1-D 
linear basis functions defined in the grid. Each linear basis function provided has the following form: 

 𝑣(𝑥) =

⎩
⎨

⎧
𝑥−𝑥𝑙𝑜𝑤

𝑥𝑚𝑖𝑑−𝑥𝑙𝑜𝑤
𝑥𝑙𝑜𝑤 < 𝑥 < 𝑥𝑚𝑖𝑑

𝑥ℎ𝑖𝑔ℎ−𝑥
𝑥ℎ𝑖𝑔ℎ−𝑥𝑚𝑖𝑑

𝑥𝑚𝑖𝑑 < 𝑥 < 𝑥ℎ𝑖𝑔ℎ
0 otherwise

�. (18) 
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The flux j at a given set of 3 coordinates (x(1), x(2), x(3)) is then: 

 𝑗(𝑥(1),𝑥(2),𝑥(3)) = ∑ 𝑣𝑖
(1)�𝑥(1)�𝑣𝑘

(2)�𝑥(2)�𝑣𝑙
(3)�𝑥(3)�𝚥�̂�𝑘𝑙𝑖,𝑘,𝑙 . (19) 

where 𝚥�̂�𝑘𝑙 is the model flux at the grid point i,k,l, computed in Section 4. 

5.3 Energy Integrals 
 
The user can request differential, integral, or “wide differential” energy channels. In the latter two 
cases, weights must be computed to provide energy integrals either from a lower bound to infinity 
(effectively the upper end of the model range) or between two specified energies, respectively. The 
integral energy weights are computed by replacing 𝑣𝑖

(1) in Eq. (19) with an appropriate integral of Eq. 
(18).  The “wide differential” weights are computed by subtracting the integral weights computed for 
the upper energy limit from the integral weights computed for the lower energy limit, and then 
dividing by the difference between the channel energy limits. That is, the wide differential channel is 
computed as the difference of two integral channels divided by the energy bandwidth. 

5.4 Angle Integrals 
Typically, the user requests an omnidirectional flux (J), which is taken to be an integral of directional 
fluxes over the span of local pitch angles. Local pitch angle integrals turn out to be integrals along a 
trajectory in the 2nd and 3rd coordinates because both depend on local pitch angle, α. This is approxi-
mated by an integral in α between fluxes interpolated onto a local grid in α: 

 𝐽 = 4𝜋 ∫ 𝑗 �𝑥(1),𝑥(2)(𝛼),𝑥(3)(𝛼)� sin𝛼 𝑑𝛼
𝜋
2
0  (20) 

The integral is approximated linearly at 5°, 10°, 20°, …, 90°: 

 𝐽 ≈ ∑ 𝑤𝑚𝑗 �𝑥(1),𝑥(2)(𝛼𝑚),𝑥(3)(𝛼𝑚)�𝑚 . (21) 

5.5 Combined Interpolation and Integration 
 
The weights wm are combined with the linear basis functions vi, vj, and vk, into a composite weight hn 
that provides the combined weight for each flux on the grid, accounting for energy and directional 
integrals. This vector of weights hn spans the coordinate grid and captures all the interpolation and 
integration required to produce the nth energy channel. A separate hn is computed for each energy 
channel using the same weights for the 2nd and 3rd coordinates.  

The complete weights for the various energy channels are then combined together into a matrix H that 
spans the grid in rows and the requested energy channels in columns. Thus, if the global flux state is 
represented as a vector of fluxes 𝚥̂⃗ spanning the grid, the fluxes 𝐽 in the requested energy channels are 
given by 
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 𝐽𝑡 = 𝐻𝑡𝚥̂⃗. (22) 

By judicious use of sparse matrices, H is computed first and then only the needed components of 𝚥̂⃗ are 
computed, thus saving evaluations of the statistical functions in Section 4. We have included sub-
scripts t in Eq. (22) to indicate that the weights must be recomputed every time step along the space-
craft trajectory (the model fluxes 𝚥̂⃗ may also change, but we will address that in the next section). 

5.6 Temporal Interpolation (dynamic scenarios only) 
The final consideration for interpolating the global state onto the spacecraft trajectory and the desired 
energy and directional channels is addressing time interpolation in the dynamic Monte Carlo scenar-
ios. Time interpolation is handled linearly in the computed flux channel. That is, the global state is 
computed only at fiducial times (integer time steps), and the requested flux channels are computed by 
linearly interpolating the derived local flux 𝐽𝑡 in time. This is equivalent to allowing the global state 
to progress linearly between fiducial times. 

5.7 Plasma-Radiation Stitching in Energy 
One complication arises from the separation of the electron and proton models into radiation models 
(AE9/AP9) and plasma models (SPME/SPMH): integral and wide differential channels that start in 
the plasma energy range but extend into the radiation energy range. In V1.0, we resolve this issue in 
post processing (see the application user’s guide [Roth, 2013]). The approach is to request a wide dif-
ferential channel from the plasma model and a complementary integral or wide differential channel 
from the radiation model.  

 

If the lowest energy in the radiation model is denoted E0, then an integral channel at E1 is given by: 

 𝐽(𝐸 ≥ 𝐸1) = 𝐽plasma(𝐸1 < 𝐸 < 𝐸0)[𝐸0 − 𝐸1] + 𝐽radiation(𝐸 ≥ 𝐸0). (23) 

As in Subsection 5.3, a wide differential channel is computed from the difference of two integral 
channels divided by the energy bandwidth. 
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6.  Summary 

This document presents a detailed description of the AE9/AP9/SPM runtime algorithms for the V1.0 
release. These algorithms address the mathematical and geophysical representation of the radiation 
and plasma climatology models. The set of models can specify the design environments for total radi-
ation dose, internal charging, proton single-event effects, and plasma dose effects for any Earth orbit. 
The runtime algorithms provide mechanisms for estimating the probability of occurrence for various 
hazardous conditions due both to dynamic variability and to model uncertainty. 
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