

 AEROSPACE REPORT NO.
 TOR-2012(1237)-3

Adding Multiple Time Lags to AE9/AP9 V1.0

August 10, 2012

Paul O’Brien
Space Science Applications Laboratory
Physical Sciences Laboratories

Prepared for:

Space and Missile Systems Center
Air Force Space Command
483 N. Aviation Blvd.
El Segundo, CA 90245-2808

Contract No. FA8802-09-C-0001

Authorized by: Engineering and Technology Group

Approved for public release;
distribution is unlimited.

PHYSICAL SCIENCES LABORATORIES

The Aerospace Corporation functions as an “architect-engineer” for national security programs,
specializing in advanced military space systems. The Corporation's Physical Sciences Laboratories
support the effective and timely development and operation of national security systems through
scientific research and the application of advanced technology. Vital to the success of the Corporation
is the technical staff’s wide-ranging expertise and its ability to stay abreast of new technological
developments and program support issues associated with rapidly evolving space systems.
Contributing capabilities are provided by these individual organizations:

Electronics and Photonics Laboratory: Microelectronics, VLSI reliability, failure
analysis, solid-state device physics, compound semiconductors, radiation effects,
infrared and CCD detector devices, data storage and display technologies; lasers and
electro-optics, solid-state laser design, micro-optics, optical communications, and fiber-
optic sensors; atomic frequency standards, applied laser spectroscopy, laser chemistry,
atmospheric propagation and beam control, LIDAR/LADAR remote sensing; solar cell
and array testing and evaluation, battery electrochemistry, battery testing and
evaluation.

Space Materials Laboratory: Evaluation and characterizations of new materials and
processing techniques: metals, alloys, ceramics, polymers, thin films, and composites;
development of advanced deposition processes; nondestructive evaluation, component
failure analysis and reliability; structural mechanics, fracture mechanics, and stress
corrosion; analysis and evaluation of materials at cryogenic and elevated temperatures;
launch vehicle fluid mechanics, heat transfer and flight dynamics;
aerothermodynamics; chemical and electric propulsion; environmental chemistry;
combustion processes; space environment effects on materials, hardening and
vulnerability assessment; contamination, thermal and structural control; lubrication and
surface phenomena. Microelectromechanical systems (MEMS) for space
applications; laser micromachining; laser-surface physical and chemical interactions;
micropropulsion; micro- and nanosatellite mission analysis; intelligent
microinstruments for monitoring space and launch system environments.

Space Science Applications Laboratory: Magnetospheric, auroral and cosmic-ray
physics, wave-particle interactions, magnetospheric plasma waves; atmospheric and
ionospheric physics, density and composition of the upper atmosphere, remote sensing
using atmospheric radiation; solar physics, infrared astronomy, infrared signature
analysis; infrared surveillance, imaging and remote sensing; multispectral and
hyperspectral sensor development; data analysis and algorithm development;
applications of multispectral and hyperspectral imagery to defense, civil space,
commercial, and environmental missions; effects of solar activity, magnetic storms and
nuclear explosions on the Earth’s atmosphere, ionosphere and magnetosphere; effects
of electromagnetic and particulate radiations on space systems; space instrumentation,
design, fabrication and test; environmental chemistry, trace detection; atmospheric
chemical reactions, atmospheric optics, light scattering, state-specific chemical
reactions, and radiative signatures of missile plumes.

 AEROSPACE REPORT NO.
 TOR-2012(1237)-3

Adding Multiple Time Lags to AE9/AP9 V1.0

August 10, 2012

Paul O’Brien
Space Science Applications Laboratory
Physical Sciences Laboratories

Prepared for:

Space and Missile Systems Center
Air Force Space Command
483 N. Aviation Blvd.
El Segundo, CA 90245-2808

Contract No. FA8802-09-C-0001

Authorized by: Engineering and Technology Group

Approved for public release;
distribution is unlimited.

 ii

 AEROSPACE REPORT NO.
 TOR-2012(1237)-3

Adding Multiple Time Lags to AE9/AP9 V1.0

Approved by:

© The Aerospace Corporation, 2012.

All trademarks, service marks, and trade names are the property of their respective owners.

SC-2175(5666, 9, JS)

 iii

Abstract

The new AE9/AP9 models of the natural radiation belts at Earth capture belt dynam-
ics via Monte Carlo scenarios. Because the radiation belts exhibit dynamics on time-
scales from hours to years, multiple time lags are needed in the dynamic Monte Carlo
scenario generators. In the predecessor models (alpha and beta versions), time evolu-
tion carried information from only one prior state, that is, only one time lag. This
document describes the calculations and challenges associated with adding multiple
time lags to the autoregressive part of the V1.0 AE9/AP9 Monte Carlo scenario
generator.

 iv

This page intentionally blank.

 v

Contents

1. Introduction .. 1

2. Computing AR-N Matrices... 2

3. Accuracy and Stability Criteria .. 4

4. Computing the lafgged covariances on a reduced grid ... 5

5. Initializing a Scenario ... 6

6. Maintaining History of ... 7

7. Estimated Sizes of Matrices.. 8

References .. 9

1 Introduction

O’Brien and Guild [2010] (hereafter TEM2) provides a first-order autoregressive (AR-1) equation for
the time evolution of the principal components (~q) of the spatial variation of the radiation belts:

~qt+δt = G~qt + C~ηt+δt, (1)

In this document, we extend that equation to an arbitrary set of NG time lags, and we offset the time
notation by δt to make the meaning of the time lags more clear:

~qt =
NG∑
i=1

G
i
~qt−τi + C~ηt, (2)

This is an AR-N process [for discussion, see, e.g., Neumaier and Schneider, 2001].

The AR-1 is given by NG = 1 and τ1 = 0. We assume that the time lags ~τ will not necessarily be
uniformly spaced. For example, ~τ might be [6 hours, 1 day, 9 days, 27 days, 6 months, 1 year]. We
note that τ1 ≡ δt becomes the basic unit of time stepping, and that we will enforce that all other
τi = Tiδt, where Ti is an integer, and T1 ≡ 1. In our example ~τ , ~T is given by [1, 4, 36, 108, 730, 1460].
We will also define an unlisted value T0 ≡ 0.

The addition of arbitrary time lags presents three problems which will be addressed below: how to
compute the G

i
and C matrices, how to initialize ~q to begin a scenario, and how to store the history of

~qt to support evaluation of (2). This document concludes with some estimates of the size of the
matrices that must be computed and manipulated.

1

2 Computing AR-N Matrices

In TEM2, the AR-1 equations are derived from spatial (Σ) and one-day-lag (R) covariance matrices,
transformed into corresponding matrices for the principal components via Q and Q†:

QQT ≈ Σ, (3)

Q†Q = I, (4)

G =
[
Q† RT

(
Q†

)T
]δt/T

, (5)

C =
(
I −G GT

)1/2
. (6)

(Note: the dagger (†) denotes a matrix pseudo-inverse, which is typically computed via singular value
decomposition).

For the AR-N model, we will need a set of lag covariance matrices. Also, we will not be able to use
1-day time lag covariance matrix and adjust to δt, but rather we will have to use lag covariance
matrices that exactly match certain time lags derived from ~τ . We define a generic Gaussian covariance
matrix for the fluxes (i.e., a linear covariance matrix for the ~z’s, which represent particle fluxes
transformed to Gaussian variables) and its counterpart for the principal components (~q’s) as:

R̂
M

=
〈
~zt~z

T
t−Mδt

〉
= Q

〈
~qt~q

T
t−Mδt

〉
QT , (7)

R
M

=
〈
~qt~q

T
t−Mδt

〉
= Q†R̂

M

(
Q†

)T

. (8)

We note that R̂
0

= Σ and R
0

= I in TEM2, and that R−M = RT
M . The needed R̂

M
matrices will have

to be determined from data or from a reanalysis.

We create a series of matrix equations by taking the expected value of ~qt~q
T
t−Tjδt:

〈
~qt~q

T
t−Tjδt

〉
= R

Tj
=

NG∑
i=1

G
i
R

Tj−Ti
+

{
CCT Tj = 0

0 otherwise
, (9)

where the CCT term arises from
〈
~ηt~q

T
t

〉
because ~ηt is uncorrelated with all prior ~qt.

To put the equations in the usual form where we left-multiply the unknowns, we will use:

RT

Tj
=

NG∑
i=1

R
Ti−Tj

GT

i
+

{
CCT Tj = 0

0 otherwise
(10)

We will solve for all the G
i

simultaneously, and then solve for C.

2



RT

T1

RT

T2

RT

T3
...
RT

TNG


=



I R
T2−T1

R
T3−T1

· · · R
TNG

−T1

RT

T2−T1
I R

T3−T2
· · · R

TNG
−T2

RT

T3−T1
RT

T2−T1
I · · · R

TNG
−T3

...
...

...
...

. . .
...

RT

TNG
−T1

RT

TNG
−T2

RT

TNG
−T3

· · · I




GT

1

GT

2

GT

3
...
GT

NG

 (11)

The number of unique R̂
M

matrices required is less than or equal to 1 + (NG + 1)NG/2, of which all
but one (R̂

0
= Σ) are converted to covariances in the principal components (R

M
). Equation (11) is

square and the matrix to be inverted is symmetric. After solving for the G
i
, we will solve for C using

the T0 case of (9):

CCT = I −
NG∑
i=1

R
Ti

GT

i
(12)

A few additional manipulations can show that this expression necessarily yields a symmetric CCT . To
obtain C, we take a Cholesky or eigenvalue square root of CCT .

3

3 Accuracy and Stability Criteria

We must ensure that CCT is symmetric and does not have any eigenvalues with magnitude larger than
1. Also, because (2) is only an approximation of the time series dynamics, it is possible that the
solution G

i
is unstable. The stability condition is that none of the eigenvalues of the total time

evolution matrix have magnitude 1 or greater.

The first (accuracy) condition is: ∣∣∣(CCT
)
ij
−

(
CCT

)
ji

∣∣∣ < ε, (13)

where ε << 1 is some small error tolerance, e.g., 0.01.

The second (stability) condition is:

|Λjj | < 1, (14)

CCT = V ΛV T , (15)

where Λ is diagonal, and V V T = I.

The final (stability) condition is:∣∣∣Λ̃jj

∣∣∣ < 1, (16)

G̃G̃
T

= Ṽ Λ̃Ṽ
T
, (17)

G̃ =


G̃

1
G̃

2
· · · G̃

NG−1
G̃

NG

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

 , (18)

G̃
t

=

{
G

i
, t = Ti

0, t /∈
{

~T
} (19)

where Λ̃ is diagonal, and Ṽ Ṽ
T

= I. (Implementation note: G̃ is sparse, and can be handled with
sparse matrix algorithms. In particular, Matlab’s “eigs” function can be used to compute only the
largest magnitude eigenvalue of a sparse matrix).

In practice, empirically determined lag covariance matrices sometimes lead to time evolution solutions
that do not meet the stability criteria. In order to ensure that the stability criteria are met, a tapering
factor is used. A given lag correlation coefficient is multiplied by a value γTi , where γ ≤ 1 such that
covariances at longer lags are suppressed relative to those at shorter lags. This effectively suppresses
spurious empirical correlations. In the final version of the V1.0 runtime tables, the stability conditions
were met for γ = 1, thus requiring no tapering.

4

4 Computing the lagged covariances on a reduced grid

Computing covariance matrices is one of the most computationally intensive parts of the back-end
processing necessary to generate the AE9/AP9 runtime tables. One way to reduce the computing
power needed is to reduce the size of the grid on which the covariance matrices are computed.

We already implement a version of this for the spatial covariance matrix Σ, from which we compute Q.

In that process, we decimate the grid, compute a reduced Σ̆ and a reduced Q̆, and then interpolate the

columns of Q̆ onto the full grid to obtain Q (with some normalization corrections along the way).

Similarly, we can compute R̂
Tj

on a reduced grid: R̆
Tj

, and, using only the corresponding rows of Q,

i.e., Q̆, we can obtain R
Tj

:

R
Tj

= Q̆
†
R̆

Tj

(
Q̆
†)T

. (20)

As it turns out, we only need slightly more rows in R̆ than Nq. For example, for the AE9 beta runtime
tables (AE9VB/rev d), with Nq = 9, 9 or more randomly selected rows of Q typically lead to a

well-defined Q̆
†
. Therefore, the lag covariances can be computed on a dramatically decimated grid,

and, to some extent, the points that make up that decimated grid can be selected based on sample
size. Also, there is no need to interpolate, as we only need the covariance matrices for the principal
components for Tj 6= 0.

5

5 Initializing a Scenario

The “brute force” approach to initializing a scenario is to seed a series of ~q−δT to ~q−TNG
δt with

Gaussian white noise and then step forward (2) many (>> TNG
) times. As a rough guide, the

initialization will have to evolve for several times the longest lived eigenmode of G̃. This approach

could conceivably leave out long-lag perturbations. Initializing for N/
(
1−max

∣∣∣Λ̃jj

∣∣∣) time steps

should shrink long-lag perturbations to have magnitude e−N ; so, N ∼ 5, would suppress such effects to
be smaller than 0.01. Initial estimates suggest that for typical values of Nq and TNG

, this initialization
approach would take no more than 1-2 seconds. We can verify the validity of this scheme by initializing
multiple instances of the ~qt history to distinct samples of Gaussian white noise, but then evolving each
instance with the same series ~ηt. By determining when the different instances converge, we can
determine how long to iterate (2) to initialize the data.

A more rigorous approach would be to initialize the meta-state vector ~̂q
T

= [~qT
−δt, ~q

T
−T2δt, · · · , ~qT

TNG
δt]

with a properly-conditioned multivariate Gaussian so that ~̂q preserves the covariance
〈
~̂q~̂q

T
〉
. This

would involve building and factoring a square matrix Nq × TNG
on a side. Such a matrix would include

R
M

for all M from 0 to TNG
, which is far beyond what is needed to compute G

i
and C because

TNG
>> 1 + (NG + 1)NG/2. It may be possible to solve this problem by only building and factoring

the sub-matrices that make up the large covariance matrix, but so far my attempts to divine such an
approach have failed.

6

6 Maintaining History of ~q

To evaluate (2), we need to store a history of ~qt for at least TNG
+ 1 times. The natural memory

structure for this is a loop queue: data does not shift each time step, rather, a pointer that defines ~qt

moves through the loop. After a time value falls off the end of the list, its memory address is reused for
the next ~qt.

7

7 Estimated Sizes of Matrices

Typical values are Nq = 10, δt = 6 hours, NG = 6, τNG
= 1 year, TNG

= 1460. Therefore, a typical
R

Ti
, G, or C matrix is 10× 10, 22 R̂

Ti
matrices are needed, and there are 600 unknowns in (11). The

large matrices are all sparse, and can be solved efficiently by solvers that account for sparseness.

The loop queue for ~qt must hold 14,600 entries, or ∼ 115 kilobytes at double precision (64-bit). The
large matrix in (11) is only 60× 60.

The slowest part of building the tables for the AR-N model is computing the 22 R̂
Tj

. Recent code

changes to the back-end processing have enable us to limit the size of R̂
Tj

computed from the data.

Currently, R̂
Tj

is computed on a limited grid that has at most about 14,000 grid points. To keep
development time under control, the limit could be further reduced without significant loss of precision
(14,000 points is still far larger than the Nq ∼ 10 principal components that are retained).

8

References

O’Brien, T.P., and T.B. Guild, Trapped Electron Model 2 (TEM-2), TR-2010(3905)-2, The Aerospace
Corporation, El Segundo, CA, 2010.

Neumaier, A., and T. Schneider, Estimation of parameters and eigenmodes of multivariate
autoregressive models, ACM Trans. Math. Soft., 27(1), 27-57, 2001.

9

	Abstract
	Contents

