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1.5  Fast Coordinates Used for Invariant 
Coordinate Calculations 

 
This section describes the neural networks used to quickly compute charged particle drift 
invariant coordinates for use in AE9/AP9/SPM V1.0/V1.1.  Specifically, neural networks were 
trained to rapidly compute the Φ and hmin drift invariants in the Olson-Pfitzer Quiet magnetic 
field model [Olson and Pfitzer, 1977].  These neural networks contributed to a dramatic and 
necessary increase in the speed of the AE9/AP9/SPM calculations, since it is necessary to 
perform several coordinate conversions at runtime for every ephemeris point requested by the 
user. 
 
This section has also been released as Aerospace Report No. TOR-2014-00293.  Matlab is a 
trademark of The Mathworks Inc. 

1.5.1  Introduction 
 
The magnetic coordinates used in the AE9/AP9/SPM model (see Section 1.2) can be time 
consuming to compute.  The field-line coordinates Lm and αeq require a trace of the local field 
line, while the drift invariants Φ and hmin require a trace of the entire drift shell.  The drift 
invariants, in particular, take far too long to compute for a practical runtime calculation.  We 
have, therefore, utilized two techniques to speed up the calculations.  First, we employ a fast 
field line trace [Pfitzer, 1991, 1995] that (1) computes the invariant integral I for multiple initial 
local pitch angles, and (2) truncates the order of the internal field model (IGRF) [Finlay et al., 
2010] as a function of altitude.  For the Olson-Pfitzer Quiet model [Olson and Pfitzer, 1977], 
these speed-ups in the local field line trace improve upon the IRBEM library [IRBEM, 2012] by 
a factor of 20-30.  Second, we utilize neural networks to capture pre-computed Φ and hmin as a 
function of time, I, and Bm (the mirror field strength).  This second speed-up still requires a trace 
of the local field line, but replaces the drift shell trace with an evaluation of the neural network.  
The use of neural networks combined with the fast field line trace nets a total speed up factor of 
250-1300 relative to the full drift orbit trace implemented in the IRBEM library.  Details of these 
two speed-up techniques follow.   

We note that the use of neural networks to avoid the full drift invariant calculation was 
developed simultaneously by our partners at Los Alamos National Laboratory for a dynamic 
external field model [Koller et al., 2009; Koller and Zaharia, 2011].  Our networks are similar in 
concept.  However, they address a simpler, quiet magnetic field model but have had to meet 
tighter requirements in terms of error performance and boundary definitions. 

1.5.2  Fast Field Line Trace 
 
To accelerate the calculation of local field line coordinates, a fast field-line tracer is used to 
calculate the I integral. This is a modified version of the INVARM routines by Pfitzer [1991; 
1995], and provides typically a factor of 20-30 speed improvement over the counterpart routines 
in the IRBEM library.  INVARM calculates I for multiple initial pitch angles simultaneously and 
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it truncates the IGRF expansion at a low ordered that is determined based on the geocentric 
distance (equivalent to altitude).  The truncation is known within INVARM as SPIGRF, for 
“speed IGRF.”  Limits on INVARM are:  magnetic latitude < 75°; geocentric radius < 12 RE; and 
B < 0.00025 G. 

We modified the tracing routines to impose limits on the equatorial (minimum B) location to 
exclude regions of Shabansky (bifurcated) drift orbits from the models.  Such orbits are unstable, 
and therefore cannot be represented in the AE9/AP9/SPM invariant coordinate system.  Figure 6 
shows several diagnostics that were used to develop the Shabansky limits.  The Shabansky limit 
is twofold:  the geocentric radius of the equatorial location must be less than a polynomial in 
hours of local time past noon (pre-noon times are negative), and the Z component of the 
equatorial location in geographic coordinates must not exceed a constant (namely, 4 RE).  Points 
outside either of these limits are treated as being outside the model.  This Shabansky 
classification is incorrect only a few percent of the time (depending on what kind of spatial 
 

 
Figure 6.  Shabansky orbit diagnostics.  Top left:  number of magnetic field minima as a function of L* 
and the radial distance at the minimum B (Bmin) point.  Top right:  the same versus local time 
coordinates of Bmin.  Bottom left:  L* versus local time of min, with a radial distance filter applied on 
the number of Bmin.  Bottom right:  side view with various markings for points inside and outside the 
Shabansky limits. 
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sampling is done).  A de facto outer limit exists where the field model exceeds internal limits 
built into the INVARM tracing routines by its authors.  The original field model limits and our 
new Shabansky limits are coded directly into the magnetic field tracing routines. 

1.5.3  Fast Φ Neural Network 
 
For the Olson-Fitzer Quiet external magnetic field [Olson and Pfitzer, 1977] model added to the 
IGRF internal field model, the global magnetic field state is fully specified by the date – which 
incorporates information about the secular variation of the internal field and the seasonal and 
diurnal variation of the external field.  For a fixed field state, the drift orbit is fully determined by 
McIlwain’s integral invariant I and the mirror magnetic field strength Bm.  A neural network is 
trained to reproduce either Φ or hmin (see below) given the date (as decimal modified Julian date, 
or MJD), as well as I and Bm. 

Both neural networks require five inputs:  (1) I1/4, for I in RE, (2) log10(Bm), for Bm in nT, (3) 
MJD, (4) YearPhase, which is given below, and (5) UT as a fraction of a day.  YearPhase is 
roughly a sidereal day of year, using 1/1/1950 as the reference phase zero and approximating a 
sidereal year as 365.25 days: 

 YearPhase = rem[MJD – MJD(1950,1,1),365.25],   (76) 

where rem(x,y) is the remainder of x divided by y.  The Φ network returns log10(Φ) for Φ in 
GRE

2.  The neural networks were developed with and conform to the open-source IRBEM neural 
network library (http://irbem.svn.sourceforge.net/viewvc/irbem/extras/nnlib/doc/nnlib.pdf). 

The Φ neural network was trained on about 64,000 points, where Φ is computed from the 
IRBEM library.  The points were sampled randomly from the 3-D space near the Earth, where it 
was assumed that each point was the mirror point of a particle.  Because several of the inputs are 
periodic, we included in the training set duplicate points just beyond the periodic boundaries 
(e.g., UT just below zero and just above 1).  The neural network library allows us to specify the 
error for each point.  We chose the larger of 0.02 or 0.01L* as the error in L* and then 
transformed that error into its equivalent for log10Φ.  The trained result of the neural network is 
stored in a stand-alone Matlab save set fastPhi_net.mat. 

To validate the neural network, we generated an independent set of about 7,000 test points.  We 
evaluate the neural network at each of these points, and computed some error statistics.  Figure 7 
shows three different approaches to the error statistics of the neural network.  The most intuitive 
of these is the percent error in L*, which is 0.26%, root mean squared error, and the largest L* 
error is 3.5% beyond L*=8.  Thus, the fast Φ neural network introduces negligible errors relative 
to the full drift orbit trace.  We note that the actual error in the physical quantities underlying the 
L* or Φ calculation have errors that are much larger because the quiet magnetic field model is 
imperfect.  However, the neural network’s purpose as a replacement for the full drift integral 
requires that it be a nearly identical mathematical replacement, regardless of the shortcomings of 
the magnetic field model from which it is derived. 

Because the neural network is simply an analytical fit, it has no inherent ability to honor the 
limits of the input or output domain.  Thus, without imposing limits, the neural network will 
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Figure 7.  Performance of neural network for computing Φ.  Top:  Neural Network log10Φ 
versus same for IRBEM library.  Middle:  Neural Network L* versus same for IRBEM.  
Bottom:  percent error in Neural Network L*. 
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return invalid Φ when given input parameters outside the training domain – that is, input 
parameters corresponding to the atmospheric loss cone or regions outside the radiation belts, or 
times beyond the validity of the IGRF data.  To solve this problem, we impose a set of boundary 
conditions on the models:  (1) we limit MJD to 1 Jan 2015, (2) we treat as “outside the model” 
points for which log10Bm exceeds a prescribed polynomial in I1/4, or (3) when I1/4 exceeds a 
maximum value of 2.23 RE

1/4.  For the Φ network, the log10Bm is shown in Figure 8.  The loss 
cone limit is determine on the surface hmin = 100 km because any point reaching that low will 
actually end up being covered by the hmin grid in the AE9/AP9/SPM models, and therefore will 
not need Φ at all. 

 

1.5.4  Fast hmin Neural Network 
 
The hmin network is structurally identical to the Φ neural network, except it returns hmin in km.  
Although hmin is used only as a coordinate for particles mirroring at low altitudes, in order to 
determine whether to use the K-Φ or K-hmin grid, we must first evaluate hmin for any point, 

 
Figure 8.  Depiction of the boundaries of the Φ neural network.  Red points indicate those 
for which the minimum altitude reached by the particle (its hmin) is below 100 km, and is 
thus in the loss cone of the Φ grid of the AE9/AP9 models.  The green boxes indicate values 
of maximum log10B (the mirror field strength, or Bm) in bins of I1/4.  A polynomial in I1/4 is 
used to define the loss cone, while the maximum I1/4 is used to define the trapping limit. 
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regardless of altitude.  Therefore, the hmin neural networks covers the entire 3-D domain covered 
by the Φ network, as well as a lower altitude portion that actually extends into the Earth, slightly. 

The internal components of the IGRF introduce considerable structure in hmin for particles that 
reach low altitudes, or whose orbits will eventually take them below the surface of the Earth.  
Therefore, a larger training set was needed, about 168,000 points.  Similarly, a larger validation 
set was used, about 18,000 points.  All points were treated as having the same error. 

The error performance of the hmin network is depicted in Figure 9.  The root mean squared error 
is 25 km, and the maximum error is 329 km, and such large errors occur only at large positive or 
negative hmin, i.e., outside the domain of the AE9/AP9 K-hmin grids.  Looking only at the range 
from -600 km to +1200 km (i.e., just encompassing the K-hmin range of AE9/AP9’s low altitude 
grid), the rms error is 12 km, and the maximum error is 80 km.  An investigation of these errors 
revealed that they were actually the result of limitations of the IRBEM lib itself – it was never 
designed to trace accurately inside the Earth. 

Like the Φ neural network, the hmin network requires definitions of the valid limits of inputs.  
The same scheme is used, specifying limits on MJD, Bm and I.  The limits are shown in Figure 
10.  It is noteworthy that the loss cone for the hmin network is defined as negative 500 km.  This 
is because the AE9 model includes points in the “drift loss cone”; that is, they are trapped on the 
local field line, but will encounter the atmosphere before the complete a full drift orbit. 

1.5.5  Known Issues 
 
The primary “known issue” for the fast neural networks and for the field model in general is 
extrapolation of the IGRF beyond the year 2015.  Some kind of extrapolation is certainly 
possible, but it is not yet known which moments of the IGRF can be extrapolated, and how far 
out into the future. 

A secondary “known issue” is the limitation on the hmin network at hmin<-500 km.  This is 
actually an issue as much with the IRBEM library as it is with the neural network.  It can likely 
be resolved in the future using a fixed-precision tracing algorithm rather than IRBEM’s fixed-
time algorithm. 

1.5.6  Summary 
 
We have presented details of two different components of our efforts to improve the run time of 
AE9/AP9/SPM by speeding up the calculation of magnetic invariant coordinates.  These speed-
ups include a fast field line tracer that was developed by Pfitzer [1991, 1995], and neural 
networks to replace drift orbit tracing.  Together, these speed-ups provide a factor of ~1000 
performance improvement over the IRBEM library tracing routines. 

We have shown that the neural networks perform very well out of sample, and are adequate 
replacements for the full numerical integrals.  We have also shown that the switch from a 
numerical integration to the neural networks required some additional constraints to identify the 
loss cone, Shabansky orbits, and the domain of validity. 
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Figure 9.  Error performance of the hmin neural network (NN).  Top:  NN hmin versus the 
IRBEM library.  Middle:  Neural network error over the full domain.  Bottom:  NN error over 
the low altitude grid region. 
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Figure 10.  The boundaries of the hmin neural network.  Red points indicate those for which 
the minimum altitude reached by the particle (its hmin) is below -500 km, and is thus in the 
drift loss cone.  The green boxes indicate values of maximum log10B (the mirror field strength, 
or Bm) in bins of I1/4.  A polynomial in I1/4 is used to define the loss cone, while the maximum 
I1/4 is used to define the trapping limit. 

 


