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1.3  AE9/AP9/SPM Runtime Algorithms 
 
This section describes the algorithms employed by the AE9/AP9/SPM V1.0/V1.1 runtime library 
to compute radiation and plasma environments.  The algorithms can be used to generate mean, 
percentile, perturbed mean, and dynamic scenario environments.  The algorithms populate the 
desired global environment on the model grid, evolve it forward in time as needed, and project it 
onto the times, locations, energy, and angular channels requested by the user. 

1.3.1  Introduction 
 
This introduction provides a high-level description of the AE9/AP9/SPM runtime algorithms.  
These algorithms are an evolution of those used in prior alpha and beta versions of AE9/AP9 
[see, e.g., O’Brien, 2005; O’Brien, 2007; O’Brien and Guild, 2010] and have been summarized 
in Ginet et al. [2013].  Later sections will repeat this information in more detail with equations 
and mathematical notations.  The runtime algorithms generate mean, percentile, and static 
perturbed mean radiation and plasma environments, as well as dynamic Monte Carlo scenarios of 
the radiation environment.  In the case of the mean and percentile environments, the parameters 
of the statistical distribution at each grid point are given by unperturbed parameter maps.  At 
each grid point, the parameter map provides a two-element vector that can be converted to the 
median and 95th percentile of the local statistical distribution.  The median and 95th percentile 
can then be converted to the parameters of either a Weibull or log-normal statistical distribution.  
With those parameters the mean or any percentile can be computed.  The AE9 electron model 
uses a Weibull distribution, while the AP9 proton model and the plasma models use log-normal 
distributions.  In the case of the perturbed mean static environments and the dynamic Monte 
Carlo environments, the unperturbed parameter map is perturbed using an anomaly matrix to 
obtain a different, perturbed parameter map for each scenario.  The perturbations are uniquely 
identified by a random number seed, which is the scenario identifier (ID) number 1 through 999.  
The anomaly matrix represents the uncertainty in the parameters of the statistical distributions, 
including sensor response uncertainties, limited duration of sampling missions, counting 
statistics, and spatial extrapolation/interpolation. 
 
For the dynamic Monte Carlo environments an initial random state is generated and evolved 
forward in time for many iterations to ensure proper temporal correlations are established before 
the mission simulation begins.  Time evolution is achieved by a multi-lag, multivariate auto-
regressive process, whose time evolution matrices (persistence and innovation conditioning 
matrices) are derived from observed spatiotemporal correlations, and the innovations themselves 
are again keyed to a random number seed corresponding to the scenario ID.  The state vector 
itself is a reduced ~10-element vector of principal component amplitudes.  The relationship 
between the principal component amplitudes and the flux level at any given grid point is 
provided by principal component matrices which are square root matrices of a specialized spatial 
covariance matrix.  In fact, the spatial covariance matrix is computed not from the fluxes, but 
from the fluxes converted to standard Gaussian variables.  All of the multivariate linear time 
iteration operations retain the Gaussian nature of the data, and also preserve the zero mean and 
unit variance of a standard Gaussian.  Thus, one must convert from the standard Gaussian to the 
local Weibull or log-normal statistical distribution to obtain flux at each grid point.   
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With flux given at each grid point, one must then compute the requested particle fluxes at the 
spacecraft location.  For unidirectional differential fluxes, the computation is simply linear 
interpolation from the grid onto the local magnetic coordinates.  However, for more commonly-
requested omnidirectional and/or integral fluxes, the computation may also involve integrating 
over the local magnetic coordinates.  Angular integrals to obtain omnidirectional flux are 
conducted in terms of local pitch angle, assuming symmetry around the local magnetic field 
direction. 
 
The particle flux in each desired energy channel is computed at each point along the spacecraft 
trajectory, thus providing a simulation of what one would measure with an idealized particle 
sensor.  For the static environments, and often for the dynamic environments, time variation is 
due mainly to motion of the spacecraft and to a lesser extent to motion of the model currents 
inside and outside the Earth.  However, over time, the dynamic environments will explore a 
larger range of variation than what appears in the static environment due simply to spacecraft 
motion. 
 
The simulated sensor data can be fed into an effects code to compute the outcome of radiation or 
plasma interactions with matter, parts, or systems.  For effects due only to whole-mission linear 
accumulation (average, fluence, dose), the mean and perturbed mean static environments can be 
used, and can be run for only a representative time sample (either a few orbits, or a set of times 
randomly but uniformly distributed over the course of the mission).  For effects that depend on 
the instantaneous particle flux (single event effects, dose rate) or time history of particle flux 
(internal charging), the dynamic Monte Carlo scenarios must be used.  Running full mission 
simulations can be so time consuming and can produce so much raw flux data that they can be a 
burden even to mid-range computing clusters and mass storage.   
 
To obtain statistical confidence intervals, one must run multiple scenarios of either the static 
perturbed means or the dynamic Monte Carlo scenarios, compute the required effects from the 
fluxes, and the compute statistical distributions of those effects.  Computing effects from 
percentiles of fluxes will likely lead to incorrect results because the calculation of percentiles is a 
nonlinear operation (sorting), even if the effects themselves are linearly dependent on the flux. 
 
In the remainder of this section, we will describe the algorithms and equations in detail. 

1.3.2  Runtime Tables 
 
The AE9/AP9/SPM model depends on several databases of runtime tables.  Each model AE9, 
AP9, SPMH, SPME, SPMO, and SPMHE has a model-specific database with a name like 
AE9V10_runtime_tables.mat.  These are binary Matlab save sets and conform to the HDF5 
format standard (Matlab is a trademark of The Mathworks, Inc.).  There are also support 
databases, e.g., the coefficients of the International Geophysical Reference Field (IGRF) model 
[Finlay et al., 2010].  The contents of a model-specific database are identified in Table 2.  Each 
quantity in Table 2 will be used in later in this section.  Section 1.4 describes the statistical 
manipulations required to generate each quantity. 
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Table 2.  Main quantities in each model-specific runtime tables data file. 

Quantity Variable Name Symbol Size Purpose 
Parameter map theta θ ~20,000* x 2 Represent the transformed 50th 

and 95th percentile flux on the 
coordinate grid 

Anomaly matrix Stheta Sθ ~40,000† x ~10 Represents error covariance 
matrix for θ due to 
measurement errors 

Principal 
Component Matrix‡ 

Q Q ~20,000* x ~10 Represents the principal 
components of spatial variation 

Time Step‡ dt δt Scalar  
Persistence Matrix‡ G G ~10 x 10 x ~5 Represents persistence of 

principal component 
amplitudes 

Innovation 
Conditioning 
Matrix‡ 

C C ~10 x 10 Allocates white noise driver to 
principal components 

Conditioning Time‡ conditioning_time N/A Scalar Specifies length of 
conditioning time needed to 
initialize state history 

Grid grid N/A (structured) Stores information about the 
grid 

*20,000 includes two grids and is appropriate for AE9 and AP9.  SPM models are smaller 
†40,000 includes two entries for each grid point 
‡Monte Carlo quantities are not defined for the plasma (SPM) models. 
 

1.3.3  Magnetic Coordinates Grid 
 
Section 1.2 provides a detailed discussion of the drift and bounce invariant coordinate systems 
used in the component models of AE9/AP9/SPM.  Here we will just provide a short review of 
the coordinate systems and then describe how they are used at runtime.  The specific coordinate 
identities, ranges, and resolutions are given in Table 1. 

The radiation belt models AE9 and AP9 actually use two grids.  The high altitude grid uses 
energy (E), Kauffman’s K, and the third adiabatic invariant or flux invariant Φ.  The low altitude 
grid uses E, K, and the minimum altitude encountered on a drift orbit (hmin).  It should be noted 
that K and hmin are drift invariants but not adiabatic invariants (i.e., they are constant only in a 
static magnetic field). 
 
The plasma models (SPM) use E, equatorial pitch angle (αeq), and McIlwain L (Lm) coordinates.  
Equatorial pitch angle is a bounce invariant, not a drift invariant, but was selected for historical 
reasons.  It should be noted that the plasma particles respond to the global electric field strongly 
enough that their magnetic coordinates are not drift invariant anyway (a set of electromagnetic 
coordinates would be required). 
 
The grid variable in the model-specific runtime tables provides all the information from, 
including identity of the coordinates, their units, ranges and resolutions, and any transforms 
needed (such as exponentiation or logarithms). 
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For AE9 and AP9, the runtime tables combine the parameter maps (θ) and the principal 
components matrix Q for the high and low altitude grids by “stacking” them, or concatenating 
them along the first dimension.  For Sθ a second stacking is done with respect to θ1 and θ2.  The 
runtime code keeps track of this stacking with help from parameters stored in the grid variable. 
 
Because (as we will see later) the model formulation can represent only non-zero fluxes, zero 
fluxes are achieved by removing points from the model grid.  This is done in two stages:  first, an 
atmospheric loss cone is defined and use to remove points based on a relationship between the 
2nd and 3rd coordinates.  This loss cone filter is independent of energy and flux intensity.  The 
second filter is determined during the statistical processing of the data (see Section 1.4), and it 
removes points where the median flux is smaller than the maximum flux by a specified ratio.  
For AP9, this ratio is 10-10; for the other models, the ratio is 10-9.  Thus, the second filter is 
energy and intensity dependent.  The lists of which grid points are involved in each filter are 
provided as part of the grid variable in the model-specific runtime tables. 
 
Finally, the grid variable includes a set of “linear basis functions” that represent the lower, 
middle, and upper end points.  These basis functions are tracked separately for Energy as 
opposed to the 2-D spatial region covered by the 2nd and 3rd invariants.  The lower and upper 
bounds are defined to account for different kinds of grid boundaries when performing grid 
interpolations:  no flux is allowed below K=0, below the lowest energy grid point, nor in the loss 
cone.  At runtime there is then no need to consult the definitions of the boundaries, instead 
relying on the lower and upper bounds for each grid point. 
 
Because the grid variable is simply a saved version of the Matlab object used to define the grid 
for all the backend processing, it contains many vestigial entries that are not used at run time.  In 
a later version of the model, we may remove the items from the file to reduce potential for 
confusion. 

1.3.4  Populating a Requested Global State 
 
For each model the parameter maps (θ) provide the median (m50) and 95th percentile (m95) flux at 
each grid point.  At each grid point the map provides two values θ1 and θ2 such that: 

 𝑚50 = 𝑒𝜃1        (7) 

 𝑚95 = 𝑒𝜃1 + 𝑒𝜃2       (8) 

This transform ensures that any pair of real values for θ1 and θ2 will give m95 > m50 > 0.  With 
the two percentiles in hand, one can derive the standard parameters of either the Weibull (used 
for AE9 electrons) or Log Normal distribution (used for everything else), and thereby compute 
any desired statistical property (usually the mean or a chosen percentile) of the flux at that grid 
point. 

The cumulative distribution function for the Weibull is given by 

 𝐹(𝑥) = 1 − exp [−(𝑥 𝑥0⁄ )𝛾],      (9) 
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and the parameters are related to the 50th and 95th percentiles by 

 𝛾 = �ln ln20
ln2

� �ln ln𝑚95
ln𝑚50

��       (10) 

 𝑥0 = 𝑚50
(ln 2)1 𝛾⁄ .        (11) 

The cumulative distribution function for the Log-Normal is given by 

 𝐹(𝑥) = Φ�ln𝑥−𝜇
𝜎

�,       (12) 

where Φ is the cumulative distribution function for the unit normal or standard Gaussian.  The 
parameters of the Log Normal are related to the 50th and 95th percentiles by: 

 𝜇 = ln𝑚50        (13) 

 𝜎 = ln𝑚95−𝜇
Φ−1(0.95).        (14) 

1.3.4.1  Mean 
 
To populate the global state for a run through the mean environment, the θ parameters are used 
to compute m50 and m95 at each grid point according to the formulae above, and then the 
following formulae are applied to compute the mean at the grid point: 

 〈𝑥〉 = 𝑥0Γ(1 + 1 𝛾⁄ ) (Weibull),     (15) 

 〈𝑥〉 = exp[𝜇 + 𝜎2 2⁄ ] (Log Normal),     (16) 

where <> represents the population mean or average, and Γ is the complete Gamma function. 

1.3.4.2  Percentiles 
 
When a given percentile flux map is requested, it is rescaled onto the [0,1] domain by the 
variable u.  At each grid point, θ is converted to the parameters of the relevant cumulative 
distribution, and the flux is then given by the inverse of the cumulative distribution function F 
given above 

 𝑥 =  𝐹−1(𝑢).        (17) 

1.3.4.3  Perturbed mean 
 
The perturbed mean uses the same formulae to compute the mean as does the unperturbed mean.  
However it uses a perturbed parameter map.  To distinguish the unperturbed and perturbed maps, 
we add the superscript (0) to the parameter map:  θ(0).  The perturbation is computed from Sθ, 
which we will treat as a matrix, and we will treat θ(0) and θ as vectors.  The parameter map 
perturbation equation is then given in linear algebra notation as: 
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 �⃗� = �⃗�(0) + 𝑆𝜃𝜀       (18) 

Where 𝜀 is a vector of uncorrelated uniform random variables distributed evenly between −√3 
and +√3.  This distribution has zero mean and unit variance, but, unlike the unit normal, it has 
finite bounds.  It is therefore the case that the global error covariance of the parameter map is 
given by: 

 cov��⃗� − �⃗�(0)� = 〈��⃗� − �⃗�(0)���⃗� − �⃗�(0)�
𝑇
〉 = 𝑆𝜃〈𝜀𝜀𝑇〉𝑆𝜃𝑇 = 𝑆𝜃𝑆𝜃𝑇 (19) 

This equation directly ties the runtime perturbations to the pre-computed errors in the parameter 
map θ via Sθ. 

The perturbed parameter map can then be used along with equations from Section 1.3.4.3 to 
compute the perturbed mean flux at every grid point. 

We note that the random number generator used to produce 𝜀 is seeded with the scenario ID 
number, 1-999. 

1.3.4.4  Monte Carlo scenarios 
 
To create a Monte Carlo scenario, one begins by perturbing the parameter map according to 
equation (18).  Next, one must initialize the dynamic state of the radiation belts, using a state 
history matrix.  The state history is initialized to a series of vectors �⃗�𝑡 of Gaussian white noise 
(uncorrelated unit normal random variables).  Then, for a model-dependent conditioning time 
[see O’Brien, 2012], the state history is updated using the autoregressive equations: 

 �⃗�𝑡 = ∑ 𝐺𝑖�⃗�𝑡−𝜏𝑖
𝑁𝐺
𝑖=1 + 𝐶�⃗�𝑡,      (20) 

where the G and C matrices and 𝜏𝑖 are part of the runtime tables, and �⃗�𝑡 is a series of Gaussian 
white noise vectors.  Through a set of relationships given in O’Brien [2012] the G and C 
matrices tie the sequence of �⃗�𝑡’s to the observed spatiotemporal correlations of the fluxes.  After 
advancing equation (20) for the prescribed conditioning time, the state history is expected to 
represent the spatiotemporal lag correlations in the associated radiation belts.  However, �⃗�𝑡 is 
only a small state vector, and it must be converted flux on the model grid via a three-step 
process. 

The first step in converting the state vector into flux is expanding it onto the model grid.  The 
state vector �⃗�𝑡 is actually a vector of amplitudes of a set of principal components of spatial 
variation.  The principal component matrix Q (provided in the runtime tables) converts from the 
state vector to the normalized fluxes 𝑧𝑡: 

 𝑧𝑡 = 𝑄�⃗�𝑡.        (21) 

By construction, each q and each z has a long-term statistical distribution that is also a unit 
normal, and the q’s are uncorrelated with each other.  Thus the spatial covariance of the  
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normalized fluxes is given by: 

 Σ = cov(𝑧𝑡) = 〈𝑧𝑡𝑧𝑡
𝑇〉 = 𝑄〈�⃗�𝑡�⃗�𝑡

𝑇〉𝑄𝑇 = 𝑄𝑄𝑇.   (22) 

This equation directly ties the observed spatial covariance (Σ) of the normalized fluxes to the 
dynamic states generated by the Monte Carlo scenarios. 

The second and third steps un-normalize each of the z’s.  The second step converts each z into its 
corresponding probability level u on the [0,1] domain, according to: 

 𝑢 = Φ(𝑧).        (23) 

The final step is to convert each u into a flux using the inverse of the cumulative distribution 
function at the grid point, i.e., using the same procedure in Section 1.3.4.2. 

The global Monte Carlo state advances in time according to the time step in Table 3 and equation 
(20).  The conversion from �⃗�𝑡 to flux is performed at each grid point at each time step. 

We note that the random number generator used to initialize the state vector history �⃗�𝑡 and to 
produce �⃗�𝑡 is seeded with the scenario ID number, 1-999.  Also, the perturbed parameter map is 
the same one produced for the same scenario ID number for a perturbed mean state, i.e., in 
Section 1.3.4.3. 
 
Table 3.  Monte Carlo parameters for AE9 and AP9. 

Monte Carlo Parameter AE9 AP9 
Number of Principal Components (Nq) 8 9 
Number of persistence matrices (NG) 6 4 
time step (δt, days) 1 7 
Time lags (τiδt, days) 1, 7, 14, 27, 183, 365 7, 28, 182, 364 
Conditioning time (days) 1253.1 1503.5 
 

1.3.5  Projecting the Environment onto the Spacecraft 

1.3.5.1  Fast coordinates 
 
For the drift invariants, Φ and hmin, the full coordinate calculation in the Olson-Pfitzer quiet field 
[Olson and Pfitzer, 1977] is too slow even on modern computers to be practical to do on demand 
in an interactive application for any significant number of telemetry points.  We solve this 
problem by using a fast field line tracer [Pfitzer, 1991; 1995] and separate neural networks 
trained on previously computed databases of either Φ and hmin.  The neural networks are trained 
to be high precision replacements for the full drift trace.  In addition, we introduced algorithms to 
identify and exclude Shabansky (bifurcated) drift orbits, as well as identifying points that are 
outside the domain of the model (which a drift shell integral would reveal, but which a neural 
network would mistake for valid inputs).  The details of this technique are given in Section 1.5. 
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We note that the use of neural networks to avoid the full drift invariant calculation was 
developed simultaneously by our partners at Los Alamos National Laboratory (LANL) for a 
dynamic external field model [Koller et al., 2009; Koller and Zaharia, 2011].  Our networks are 
similar in concept.  However, they address a simpler, quiet magnetic field model but have had to 
meet tighter requirements in terms of error performance and boundary definitions. 

1.3.5.2  Interpolation onto target magnetic coordinates 
 
An essential step in determining the requested flux at the spacecraft location is determining the 
differential, unidirection flux at a specific energy and direction of incidence at the spacecraft 
location.  For V1.0/V1.1, we do not account for finite gyroradius effects (such as the East-West 
effect).  The model provides the differential, unidirectional flux in number/(cm2 sr s MeV) on a 
grid in drift invariants.  Interpolation is performed in a linear sense onto a grid of local 
coordinates, i.e., local pitch angles.  Using our fast coordinate calculators, we can quickly obtain 
K, hmin, Φ, or Lm, or αeq for any given location and direction.  In the case of the AE9 and AP9 
models, we begin with K, hmin, and determine whether the requested point falls within the low 
altitude grid.  If so, we proceed with the interpolation using the low altitude grid.  If not, we 
compute Φ and determine if the point falls in the high altitude grid. 
 
Regardless of which coordinate gird we use, we compute the weights used for a linear 
interpolation as if we are multiplying the entire global state by a vector of weights (v).  Of 
course, because only a small number of grid points is actually used to interpolate to a desired 
target location/direction, the weights are very sparse.  The linear interpolation is performed in 
terms of the product of separate 1-D linear basis functions defined in the grid.  Each linear basis 
function provides has the following form: 

 𝑣(𝑥) =

⎩
⎨

⎧
𝑥−𝑥𝑙𝑜𝑤

𝑥𝑚𝑖𝑑−𝑥𝑙𝑜𝑤
𝑥𝑙𝑜𝑤 < 𝑥 < 𝑥𝑚𝑖𝑑

𝑥ℎ𝑖𝑔ℎ−𝑥
𝑥ℎ𝑖𝑔ℎ−𝑥𝑚𝑖𝑑

𝑥𝑚𝑖𝑑 < 𝑥 < 𝑥ℎ𝑖𝑔ℎ
0 otherwise

.    (24) 

The flux j at a given set of 3 coordinates (x(1), x(2), x(3)) is then: 

 𝑗(𝑥(1), 𝑥(2), 𝑥(3)) = ∑ 𝑣𝑖
(1)�𝑥(1)�𝑣𝑘

(2)�𝑥(2)�𝑣𝑙
(3)�𝑥(3)�𝚥�̂�𝑘𝑙𝑖,𝑘,𝑙 . (25) 

where 𝚥�̂�𝑘𝑙 is the model flux at the grid point i,k,l, computed in Section 1.3.4. 

1.3.5.3  Energy integrals 
 
The user can request differential, integral, or “wide differential” energy channels.  In the latter 
two cases, weights must be computed to provide energy integrals either from a lower bound to 
infinity (effectively the upper end of the model range) or between two specified energies, 
respectively.  The integral energy weights are computed by replacing 𝑣𝑖

(1) in Equation (25) with 
an appropriate integral of Equation (24).  The “wide differential” weights are computed by 
subtracting the integral weights computed for the upper energy limit from the integral weights 
computed for the lower energy limit, and then dividing by the difference between the channel 
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energy limits.  That is, the wide differential channel is computed as the difference of two integral 
channels divided by the energy bandwidth. 

1.3.5.4  Angle integrals 
 
Typically, the user requests an omnidirectional flux (J), which is taken to be an integral of 
directional fluxes over the span of local pitch angles.  Local pitch angle integrals turn out to be 
integrals along a trajectory in the 2nd and 3rd coordinates because both depend on local pitch 
angle α.  This is approximated by an integral in α between fluxes interpolated onto a local grid 
in α: 

 𝐽 = 4𝜋 ∫ 𝑗 �𝑥(1), 𝑥(2)(𝛼), 𝑥(3)(𝛼)� sin𝛼 𝑑𝛼
𝜋
2
0     (26) 

The integral is approximated linearly at 5, 10, 20, ...  90 degrees: 

 𝐽 ≈ ∑ 𝑤𝑚𝑗 �𝑥(1), 𝑥(2)(𝛼𝑚), 𝑥(3)(𝛼𝑚)�𝑚 .    (27) 

1.3.5.5  Combined interpolation and integration 
 
The weights wm are combined with the linear basis functions vi, vj, and vk, into a composite 
weight hn that provides the combined weight for each flux on the grid, accounting for energy and 
directional integrals.  This vector of weights hn spans the coordinate grid and captures all the 
interpolation and integration required to produce the nth energy channel.  A separate hn is 
computed for each energy channel using the same weights for the 2nd and 3rd coordinates.   
 
The complete weights for the various energy channels are then combined together into a matrix 
H that spans the grid in rows and the requested energy channels in columns.  Thus, if the global 
flux state is represented as a vector of fluxes 𝚥̂⃗ spanning the grid, the fluxes 𝐽 in the requested 
energy channels are given by 

 𝐽𝑡 = 𝐻𝑡𝚥̂⃗.        (28) 
 
By judicious use of sparse matrices, H is computed first and then only the needed components of 
𝚥̂⃗ are computed, thus saving evaluations of the statistical functions in Chapter 4.  We have 
included subscripts t in (28) to indicate that the weights must be recomputed every time step 
along the spacecraft trajectory (the model fluxes 𝚥̂⃗ may also change, but we will address that in 
the next section). 

1.3.5.6  Temporal interpolation (dynamic scenarios only) 
 
The final consideration for interpolating the global state onto the spacecraft trajectory and the 
desired energy and directional channels is addressing time interpolation in the dynamic Monte 
Carlo scenarios.  Time interpolation is handled linearly in the computed flux channel.  That is, 
the global state is computed only at fiducial times (integer time steps), and the requested flux 
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channels are computed by linear interpolating the derived local flux 𝐽𝑡 in time.  This is equivalent 
to allowing the global state to progress linear between fiducial times. 

1.3.5.7  Plasma-radiation stitching in energy 
 
One complication arises from the separation of the electron and proton models into radiation 
models (AE9/AP9) and plasma models (SPME/SPMH):  integral and wide differential channels 
that start in the plasma energy range but extend into the radiation energy range.  In V1.0/V1.1 we 
resolve this issue in post processing (see the application user’s guide [Roth., 2014]).  The 
approach is to request a wide differential channel from the plasma model and a complementary 
integral or wide differential channel from the radiation model.   

If the lowest energy in the radiation model is denoted E0, then an integral channel at E1 is given 
by: 

 𝐽(𝐸 ≥ 𝐸1) = 𝐽plasma(𝐸1 < 𝐸 < 𝐸0)[𝐸0 − 𝐸1] + 𝐽radiation(𝐸 ≥ 𝐸0) (29) 

As in Section 1.3.5.3, a wide differential channel is computed from the difference of two integral 
channels divided by the energy bandwidth. 

1.3.6  Summary 
 
This section presents a detailed description of the AE9/AP9/SPM runtime algorithms for the 
V1.0/V1.1 releases.  These algorithms address the mathematical and geophysical representation 
of the radiation and plasma climatology models.  The set of models can specify the design 
environments for total radiation dose, internal charging, proton single event effects, and plasma 
dose effects for any Earth orbit.  The runtime algorithms provide mechanisms for estimate the 
probability of occurrence for various hazardous conditions due both to dynamic variability and to 
model uncertainty. 

  


