

IRENE-AE9/AP9 Overview

IRENE Industry Virtual Day, March 1-2 2023

W. R. Johnston¹, T. P. O'Brien²

¹Space Vehicles Directorate, AFRL, Kirtland AFB, NM

²The Aerospace Corp., Chantilly, VA

Outline

- Introduction
- Coverage and application
- Releases
- Architecture
- Data sets
- Comments on usage and limitations
- Summary

Our team

Air Force Research Laboratory

Bob Johnston

Aerospace Corp.

Paul O'Brien Tim Guild Alex Boyd

Atmospheric & Environmental Research

Christopher Roth Dalton Kell

Jared Klemm

Rick Quinn Dan Shanaberger Stu Huston (ret)

NASA

Kerry Lee
Chris Mertens
Joe Minow
Bruno Alessandro (ctr)

British Antarctic Survey

Alexander Lozinski

European Space Agency

Hugh Evans Piers Jiggens Simon Clucas

DH Consultancy

Daniel Heynderickx

sparc

SPARC

Ingmar Sandberg
Sigiava Aminalragia-Giamini
Constantinos Papadimitriou
Zafir Iqbal

Kallisto Consultancy

Pete Truscott

INFN

esa

Matteo Martucci Francesco Cafagna Roberta Sparvoli

RadMod Research

Fan Lei

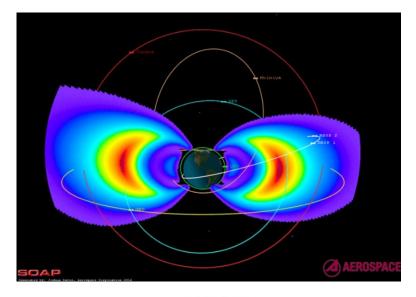
Nagoya University

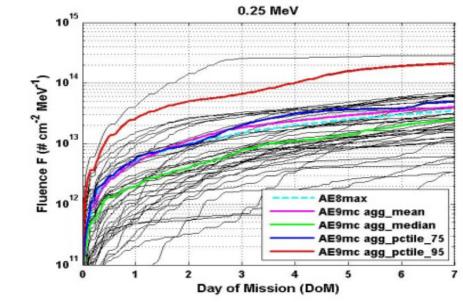
Yoshizumi Miyoshi

NICT

Tsutomu Nagatsuma Kaori Sakaguchi

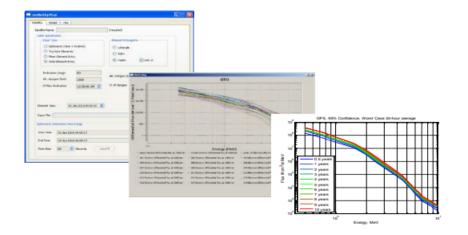
JAXA


Iku Shinohara

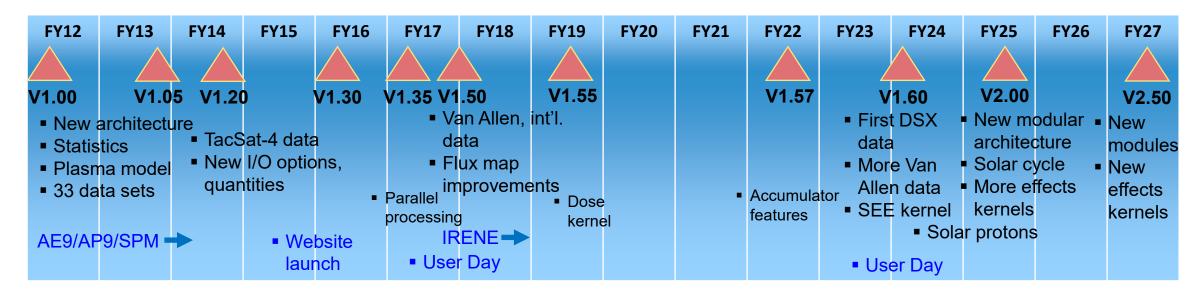


What is IRENE?

- IRENE-AE9/AP9 specifies the natural trapped radiation environment for satellite design and mission planning
- It improves on legacy models to meet modern design community needs:
 - Uses 45 long duration, high quality data sets
 - Full energy and spatial coverage—plasma added
 - Introduces data-based uncertainties and statistics for design margins (e.g., 95th percentile)
 - Dynamic scenarios provide worst case estimates for hazards (e.g., SEEs)
 - Architecture supports routine updates, maintainability, third party applications
- V1.00 released in 2012, V1.50 in Dec 2017
- V1.57 released in Oct 2022



Coverage and application


- Energy coverage from keV plasma to GeV protons
- Spatial coverage for all orbit regimes, including tailored coverage for high resolution in LEO
- Model provided with GUI and CmdLine access
- Distribution as Windows executable
 - Source code package available on request from AFRL for other platforms (build instructions included)
- Documentation includes recommended modes for typical use cases

Model	AE9	AP9	SPM
Species	e ⁻	H⁺	e⁻, H⁺, He⁺, O⁺
Energies	40 keV—	100 keV—	1—40 keV (e ⁻);
	10 MeV	2 GeV (V1.20)	1.15—164 keV (H+,
			He+, O+)
Range in L	0.98 < L*	0.98 < L* < 12.4	2 < L _m < 10
	< 12.4		

IRENE-AE9/AP9 releases

Version numbering:

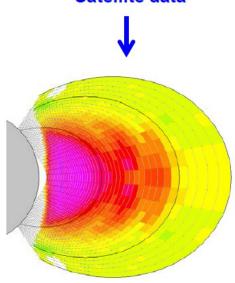
- 1.00—1st digit change = new architecture
- 1.50—2nd digit change = new flux maps
- 1.57—3rd digit change = new features

Releases:

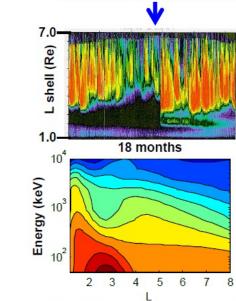
 AFRL conducts releases with public release slightly delayed from restricted release (no difference in versions)

Forthcoming:

- V1.60—flux map updates, IGRF 2020
- Add solar proton module in V1.60 or V2.00
- V2.00 development
 - Architecture overhaul—tailored modules, more hazard populations
 - Kernels for SEEs, internal charging
- V2.50—more modules, kernels

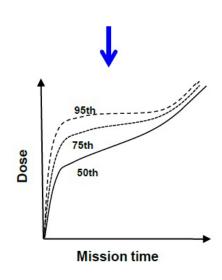


Architecture


Satellite data

Flux maps

- · Derive from empirical data
- Systematic data cleaning applied
- Create maps for median and 95th percentile of distribution function
 - Maps characterize nominal and extreme environments
- Include error maps with instrument uncertainty
- Apply interpolation algorithms to fill in the gaps


Satellite data & theory

Statistical Monte-Carlo Model

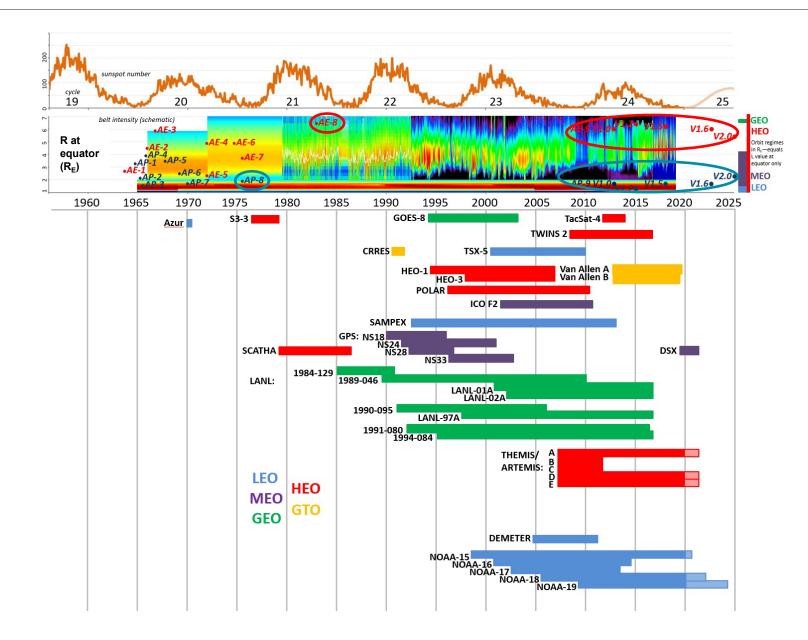
- Compute spatial and temporal correlation as spatiotemporal covariance matrices
- From data (V 1.0)
- Use one-day (protons) and 6 hour (electrons) sampling time (V 1.0)
- Set up Nth-order auto-regressive system to evolve perturbed maps in time
- Covariance matrices give SWx dynamics
- Flux maps perturbed with error estimate give instrument uncertainty

User's orbit

User application

- Runs statistical model N times with different random seeds to get N flux profiles
- Computes dose rate, dose or other desired quantity derivable from flux for each scenario
- Aggregates N scenarios to get median, 75th and 90th confidence levels on computed quantities

Data sets

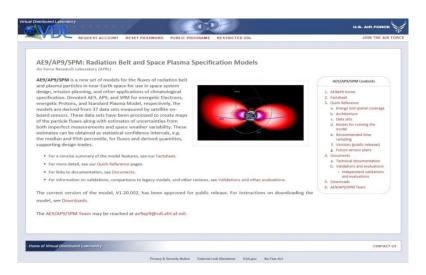

Incorporates 45 data sets from 1969-2016

Chosen for high quality and coverage 330+ instrument-years of data

10x more than AE8+AP8

All solar cycle phases sampled

- 16 sets >10 yrs
- 27 sets >5 yrs
- Long data sets yield statistics on variability


Comments

- Documentation in distribution package
 - Further documentation available on our web site https://www.vdl.afrl.af.mil/programs/ae9ap9
- Advice to users
 - User's guide provides recommendations for time steps, model mode and run duration for various objectives
 - See Aerospace report TOR-2022-00016, Best practices for generating space environment specifications with modern tools
- Current limitations
 - No solar protons (forthcoming--see SAPPHIRE-2S talk)
 - No explicit solar cycle variation (forthcoming—see V2.0 talk)
 - Statistics from Monte Carlo mode capture the range of expected fluxes over a solar cycle
 - Plasma model lacks local time dependence and Monte Carlo capability (forthcoming—see V2.0 talk)

Conclusion

- IRENE-AE9/AP9 continues to be maintained and upgraded as a comprehensive radiation environment design standard
 - Future releases will include new data sets and new features, driven by user needs
 - We seek models and data from the community to further these improvements
- Comments, questions, etc. are welcome and encouraged!
- Please send questions, feedback, requests for model or documentation, etc., to (copy all):
 - Bob Johnston, Air Force Research Laboratory, <u>AFRL.RVBXR.AE9.AP9.Org.Mbx@us.af.mil</u>
 - Paul O'Brien, The Aerospace Corporation, paul.obrien@aero.org

 Current model downloads, documentation, news are available at AFRL's Virtual Distributed Laboratory: https://www.vdl.afrl.af.mil/programs/ae9ap9

List of presentations

- IRENE overview (Bob Johnston/AFRL)
- ESA perspective (Piers Jiggens/ESA)
- V1.57 feature changes (Christopher Roth/AER)
- Kernels (Paul O'Brien/Aerospace Corp.)
- V1.60 plans (Bob Johnston/AFRL)
- SAPPHIRE-2S solar protons (Piers Jiggens/ESA)
- V2.0 plans (Paul O'Brien/Aerospace Corp.)
- Q&A / Demo (Christopher Roth/AER)