

AE9/AP9-IRENE space radiation climatology model

NOVEMBER 7, 2018

T. P. O'BRIEN¹, W. R. JOHNSTON², S. HUSTON³, T. GUILD¹, Y.-J. SU², C. ROTH³, R. QUINN³ ¹The Aerospace Corp., Chantilly, VA, USA ²Space Vehicles Directorate, AFRL, Kirtland AFB, NM, USA ³Atmospheric and Environmental Research, Lexington, MA, USA

Outline

Background on AE9/AP9/SPM model
Version 1.50—new data
Version 1.55—kernels
Plans for future versions
Conclusion

What is AE9/AP9-IRENE?

- AE9/AP9-IRENE specifies the natural trapped radiation environment for satellite design and mission planning
- It improves on legacy models to meet modern design community needs:
 - Uses 45 long duration, high quality data sets
 - Full energy and spatial coverage—plasma added
 - Introduces data-based uncertainties and statistics for design margins (e.g., 95th percentile)
 - Dynamic scenarios provide worst case estimates for hazards (e.g., SEEs)
 - Architecture supports routine updates, maintainability, third party applications
- Version 1.00 released in 2012

Coverage and Application

- Expanded energy coverage: keV plasma to GeV protons
- Spatial coverage for all orbit regimes, including tailored coverage for high resolution in LEO
- Model provided with GUI and Command Line access
- Documentation includes recommended modes for typical use cases

Model	AE9	AP9	SPM
Species	e⁻	H+	e⁻, H⁺, He⁺, O⁺
Energies	40 keV—	100 keV—	1—40 keV (e ⁻);
	10 MeV	2 GeV (V1.20)	1.15—164 keV (H⁺,
			He⁺ <i>,</i> O⁺)
Range in L	0.98 < L*	0.98 < L* <	2 < L _m < 10
	< 12.4	12.4	

Data Sets—Temporal Coverage

Incorporates 45 data sets from 1976-2016

 Chosen for high quality and coverage

300+ instrument-years of data

10x more than AE8+AP8

All solar cycle phases sampled:

- 16 sets >10 yrs
- 26 sets >5 yrs

10x the data of previous models, and still growing!

Versions to Date

V/4 00		10 ⁶ AP9 V1.20 4.3 MeV
(2012)	Initial release, 31 data sets	10 ⁵ CRRES Quiet CRRES Active AP9 25th %ile AP9 mean AP9 95th %ile
	TacSat-4/CEASE proton data	• TacSat-4
	THEMIS/ESA plasma data	ج 10 ⁴ ۶
V1.20 (2015)	Van Allen Probe influence to AE9 and AP9 changes	$(10^{3})^{+}$
	more I/O options	
	added IGRF 2015	10^{1} 1.5 2 2.5 3 3.5 4 4.5
V1.30 (2016)	Fixed instability in V1.20 AP9, AE9 Monte Carlo mode	Radial profile in AP9V12 median along MAG +X axis at 01-Jan-2000
V1.35 (2017)	Support for parallelized processing	10 10 10 10 10 10 10 10 10 10
V1.50 (2017)	New data sets for electrons, protons: Van Allen Probes, Azur, HiLET	CRRESPRO ACTIVE

Changes in AE9/AP9 V1.50

- AP9 and AE9: new data from NASA's Van Allen Probes mission
- AP9: data added from Azur and TWINS 2
- AP9 and AE9: other revisions to flux maps (addressing gradients and other aspects of data set merging)
- Limited feature changes with this release—most significant are new accumulator options (e.g., fluence accumulation intervals)
- Begin transition to new name: International Radiation Environment Near Earth (IRENE), reflecting international participation (e.g., Azur data)

satellite	orbit	time period	instrument	species	energy
Van Allen			RPS (Relativistic Proton Spectrometer)	protons	>58 MeV ~2 GeV
Probes A & B	GTO (800 x 30600 km, 10°)	Aug 2012 – Dec 2016	REPT (Relativistic Electron Proton Telescope)	protons	20 – 100 MeV
			MagEIS	electrons	30 keV – 2 MeV
Azur	384 x 3145 km, 103°	Nov 1969 – Mar 1970	EI-88 telescope	protons	1.5 – 104 MeV
TWINS 2	Molniya (1000 x 39500 km, 63°)	Apr 2008 – Nov 2016	HILET	protons	6 – 30 MeV

- AP9 adds Azur, HiLET and Van Allen Probes data
- These new data generally bring down the inner zone fluxes
- Especially large changes >150 MeV where RPS data represent the first clean observations in the inner zone up to 2 GeV

V1.50 AP9 Validation

- Use a "sequestered" dataset for verification: POES in LEO.
- V1.50 is ~2.5-3.5x lower than POES SEM channels with historical flux conversion factors.
- V1.50 is comparable to the ONERA/OPAL model, which uses new flux conversion factors for POES/SEM.
- Shape of SAA profile is generally consistent between AP9 and data

V1.50 Changes – AP9 Dose

- Lower dose in all orbits
- Most pronounced in LEO at all depths and in GTO at thicker depths
- In some places, larger error bars raise 95% CL even though mean flux is lower

V1.50 Changes – AE9 Flux Maps

- AE9 adds Van Allen Probes data
- These new data generally bring down the inner zone fluxes
- Some localized higher fluxes

V1.50 Changes – AE9 in LEO

- Fluxes are higher at <800 keV for 1000 km orbits
- Upper error bars are larger for both orbits

Forthcoming Versions

Version	Features
V1.55 (late 2018)	Kernels for faster effects calculations
V1.60 (2019)	Additional Van Allen Probes data
	New architecture
V2.00	New modules—solar protons, sample solar cycle
(~2020)	4-dimensional AE9, AP9, SPM
	New data sets—POES, int'l.
V2.50(?)	New modules
(~2021)	New data sets—DSX, Arase

Kernel-Based Effects Calculation

• Proton SEE rate calculation, proton displacement damage, electron internal charging currents, etc.

Example: Proton SEE rate calculation

- User provides Weibull or Bendel Parameters and desired shielding depths
 Geosynchronous Transfer (
- Utility computes "kernel" that transforms proton flux to SEE rate behind shielding
- Model will be able to output
 - Instantaneous SEE rate
 - Mission average SEE rate
 - Worst case SEE rate on desired timescale

Effects Kernels

- AE9/AP9 natively provides confidence levels on differential or integral flux
- Users want more:
 - It is conservative to compute the 95th % confidence level radiation effect from a 95th percentile spectrum: assumes all energies are at 95th % level simultaneously
 - Users want other radiation effects that have become de facto standards
- Precomputed kernels convert flux-energy spectrum into linear radiation effects
- Kernels allow use of AE9/AP9 statistical machinery to compute effects at every time step or for every scenario, as needed, before computing confidence levels removes unneeded conservatism
- Kernels allow AE9/AP9 to compute several radiation effects:
 - Dose vs depth
 - Displacement damage due to protons
 - Single Event Effects due to protons
 - Charging current behind shielding
- Kernels are "fast" to allow calculation of worst case transients by converting every spectrum to its
 effects
- User can provide their own kernels for custom shielding, materials

V1.55 Update – Dose Kernel

- Release 2018
 - US Government & Contractors: November 2018
 - General Public: December 2018
- Changes
 - This is a feature update only
 - Flux maps are not changed –specs generated with v1.55 will be essentially identical to v1.50
- Dose-Depth Kernels
 - All SHIELDOSE-2 target materials and geometries are now supported via kernels
 - Kernels reproduce SHIELDOSE-2 results to within ~10% or better
 - Kernels run as much as 2-10 times faster, e.g., for daily dose outputs on a 1-year run at GEO

Dose vs Depth, GPS, AE9 v1.5, Mean

Version 2.00

- Major feature changes:
 - Incorporate untrapped solar protons with statistics
 - New module frameworks for e.g. plasma species correlations, SPM stitching with AE9/AP9, auroral electrons, additional coordinates for MLT variation in SPM
 - Sample solar cycle—introduces a full solar cycle reanalysis as a flythrough option
 - AP9 improvements: solar cycle variation in LEO, east-west effect
- New data
 - Van Allen Probes/RPS, MagEIS & REPT protons and electrons (this is additional to Van Allen Probes data already added in V1.50)
 - PAMELA protons—addresses high energy proton spectra
 - Other international data sets: possibilities include Cluster/RAPID-IIMS, ESA SREMs, CORONAS, NINA, Akebono/EXOS-D, SAC-C, Jason2, PROBA-V/EPT

Version 2.0 Modules

- The module architecture is a generalization/combination of existing pieces
 - Khmin/KPhi stitching (runtime)
 - SPM/AX9 stitching (post-processing \rightarrow runtime)
 - ESA framework for combining trapped + solar + GCR (post-processing \rightarrow runtime)

Integrating Solar Protons

- Solar protons contribute to proton effects AP9:
 - Total Ionizing Dose
 - Displacement Damage
 - Single Event Effects

- Statistical laws disallow adding 95th percentiles from AP9 and a solar model to obtain a combined 95th percentile
 - The statistical distributions must be combined before computing percentiles
 - Combination must include dynamics for Single Event Effects
- We are working with ESA to resolve this problem
 - Developing a Monte-Carlo method for solar protons
 - We will combine that with a geomagnetic cutoff model to limit solar proton access
 - This will enhance mean, perturbed mean, and Monte Carlo runs of AP9

Sample Solar Cycle

- Capture dynamics of realistic 11+ year solar cycle via data assimilative reanalysis
- "Fly through" this simulated dynamic environment as a check on Monte Carlo results
- Use the sample solar cycle to improve correlation matrices that drive Monte Carlo dynamics
- Use the sample solar cycle to help "fill in" flux maps where observations are missing

From Maget et al., Space Weather, 2007

Additional Data in Coming Versions

- Van Allen Probes--plasma, add'l. protons, electrons
- Arase—protons, electrons, plasma
- DSX—protons, electrons, plasma
- PAMELA—high energy protons
- AMPTE—plasma
- Other international data sets
- possibilities include Cluster/RAPID-IIMS, ESA SREMs, CORONAS, NINA, Akebono/EXOS-D, SAC-C, Jason2

- Module changes will add more information, have new data needs
 - plasma MLT dependence
 - new modules such as auroral particles
- Plan to use physics-based and assimilative models to support improvements in flux maps
 - merging data sets, extrapolations, spatial-temporal correlations
 - address low-altitude gradients

Conclusion

- AE9/AP9/SPM provides radiation environment specification to meet the needs of modern designers
- Successive releases demonstrate maintainability
- Future releases will include new data sets and new features, driven by user needs
- <u>Comments, questions, etc. are welcome and encouraged!</u>
- Please send feedback, requests for model or documentation, etc., to (copy all):
- Bob Johnston, Air Force Research Laboratory, <u>AFRL.RVBXR.AE9.AP9.Org.Mbx@us.af.mil</u>
- Paul O'Brien, The Aerospace Corporation, paul.obrien@aero.org

Air Force Resea	ch Laboratory (AFRL)	Plasma specification wodels	
AE9/AP9/SPM and plasma pa design, missio	I is a new set of models for the fluxes of radi rticles in near-Earth space for use in space s a planning, and other applications of climato	ation belt /stem logical	AE9/AP9/SPM Contents 1. AE3AP9 Home
energetic Prot models are de	Denoted AE9, AP9, and SPM for energetic Ele ons, and Standard Plasma Model, respective rived from 37 data sets measured by satellit These data sets measured by satellit	ly, the son-	2. Factsheet 3. Quick Reference a. Energy and spatial coverage b. Architecture
of the particle both imperfect	fluxes along with estimates of uncertainties t measurements and space weather variabili be obtained as statistical confidence interva	from ty. These	c. Data sets d. Modes for running the model
the median an supporting de:	d 95th percentile, for fluxes and derived qua ign trades.	ntities,	e. Recommended time sampling f. Versions (public releases) g. Future version plans
For a cond For more	ise summary of the model features, see our Facts detail, see our Quick Reference pages.	heet.	4. Documents a. Technical documentation b. Validations and avaluations
For links tFor inform	For links to documentation, see Documents. For information on validations, comparisons to legacy models, and other reviews, see Validations and other evaluations.		Independent validations and evaluations sourcester
The current v	ersion of the model, V1.20.002, has been a	pproved for public release. For instruction	s on downloading the
The AE9/AP9/	5PM Team may be reached at ae9ap9@vdl.a	frl.af.mil.	

 Current model downloads, documentation, news are available at AFRL's Virtual Distributed Laboratory: <u>https://www.vdl.afrl.af.mil/programs/ae9ap9</u>