

Air Force Research Laboratory

Environment Models

4 May 2017

and Plasma

100 YEARS OF U.S. AIR FORCE SCIENCE & TECHNOLOGY

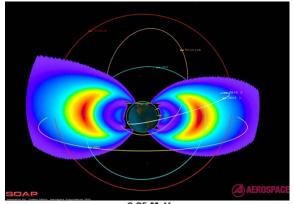
Bob Johnston
Air Force Research Laboratory
Space Vehicles Directorate, Kirtland AFB, NM
on behalf of the AE9/AP9 team

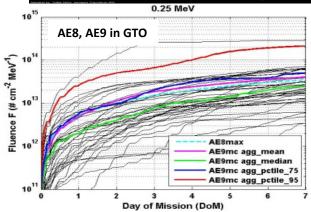
The AE9/AP9 Radiation

Integrity ★ Service ★ Excellence

Outline

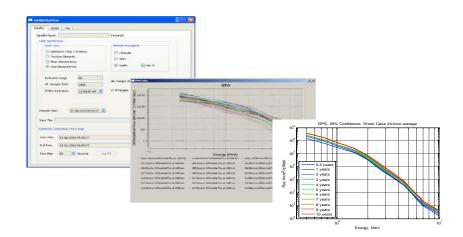
- Background on AE9/AP9/SPM model
- Summary of updates through V1.35
- Version 1.50 update
- Future version plans
- Dedicated web site for model distribution





What is AE9/AP9/SPM?

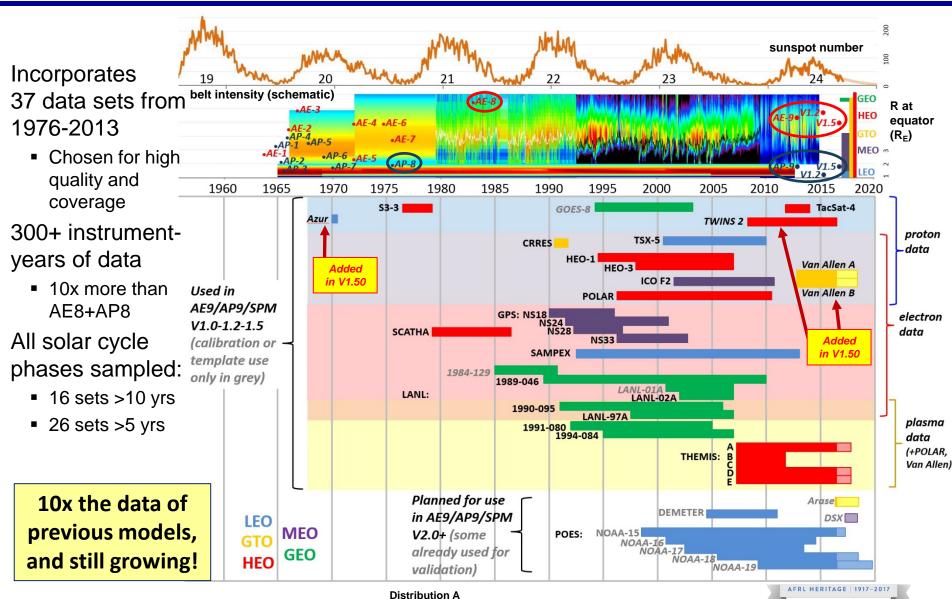
- AE9/AP9/SPM specifies the natural trapped radiation environment for satellite design and mission planning
- It improves on legacy models to meet modern design community needs:
 - Uses 37 long duration, high quality data sets
 - Full energy and spatial coverage—plasma added
 - Introduces data-based uncertainties and statistics for design margins (e.g., 95th percentile)
 - Dynamic scenarios provide worst case estimates for hazards (e.g., SEEs)
 - Architecture supports routine updates, maintainability, third party applications
- Version 1.00 released in 2012
- Version 1.20 released in March 2015
- Version 1.30 released in February 2016



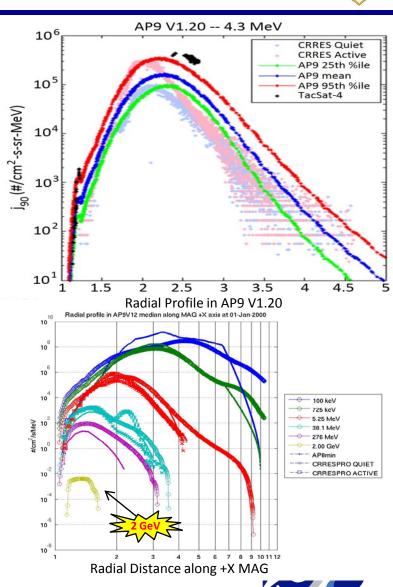
Coverage and Application

- Expanded energy coverage: keV plasma to GeV protons
- Spatial coverage for all orbit regimes, including tailored coverage for high resolution in LEO
- Model provided with GUI and CmdLine access
- Documentation includes recommended modes for typical use cases

Model	AE9	AP9	SPM
Species	e⁻	H ⁺	e ⁻ , H ⁺ , He ⁺ , O ⁺
Energies	40 keV— 10 MeV	100 keV— 2 GeV (V1.20)	1—40 keV (e ⁻); 1.15—164 keV (H ⁺ , He ⁺ , O ⁺)
Range in L	0.98 < L* < 12.4	0.98 < L* < 12.4	2 < L _m < 10

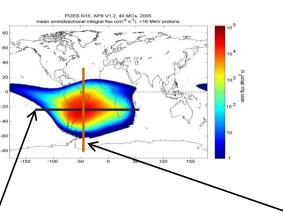


Data Sets—Temporal Coverage

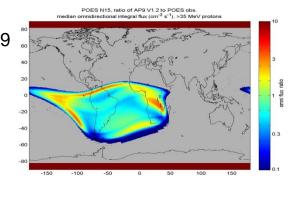


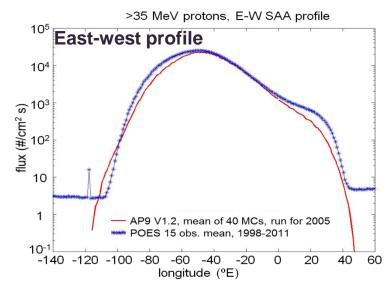
Version 1.20 – Database Updates

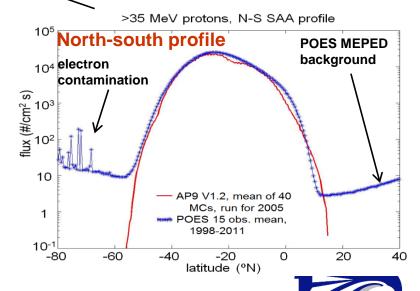
- New data set (first new data to be added):
 - TacSat-4/CEASE proton data—captures new observations of elevated 1-10 MeV protons
 - Additional plasma data: THEMIS/ESA
- New electron templates
 - Improvements for inner zone electrons and for >3 MeV spectra
- New proton templates
 - Incorporate E/K/
 — and E/K/h_{min} profiles observed by Van Allen Probes/Relativistic Proton Spectrometer (RPS)
 - Extend proton energies to 2 GeV
- Low altitude taper
 - Force fast fall-off of flux for h_{min} < 100 km.
 - Cleans up radial scalloping at altitudes below ~1000 km



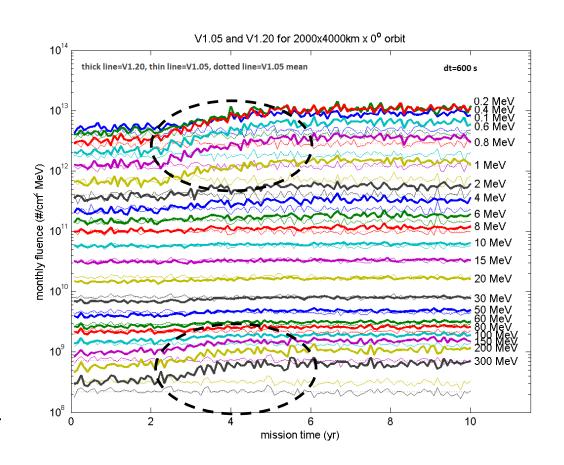
AP9 V1.20 Validation—SAA




>35 MeV protons


SAA flux profiles are improved in V1.20 as compared to POES observations

Ratio of AP9 V1.20 median to POES data



Version 1.30 – Monte Carlo Fix

- Fixes Monte Carlo instability in AP9 V1.20
 - (AP9 MC Runs would "explode" after a few years)
- V1.30 updates Monte Carlo tables and algorithms to ensure long run fluence converges to perturbed mean
- Affects AE9 and AP9 Monte Carlo runs
- Mean and Perturbed Mean calculations are unchanged from V1.20 for AE9/AP9/SPM

Version 1.35

- Released Jan 2017
- Supports parallelization
 - Uses MPI, supports multiple platforms and parallel environments
 - Use multiple cores on Windows via GUI
 - Use Linux Clusters via Command Line Utility
- Fix flux-to-fluence calculations to cover variable time steps supports optimizing time steps for shorter run times
- Better calculation of combined proton and electron dose confidence levels
- All flux and fluence results match V1.30*
 (with some minor exceptions due to new numerics)

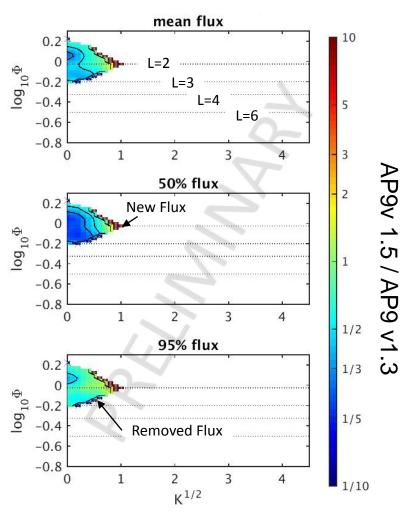
Forthcoming Versions

V1.50 (2017)	New data for electrons, protons			
V1.55(?) (2017-18)	Kernels for faster effects calculations			
V2.00 (2018-19)	New architecture			
	New modules—solar protons, sample solar cycle			
	New data sets			
V2.50(?) (2019)	New data sets (DSX, ERG)			

Changes in AE9/AP9 V1.50

- AP9 and AE9: new data from NASA's Van Allen Probes mission
- AP9: data added from Azur and TWINS 2
- AP9 and AE9: other revisions to flux maps (addressing gradients and other aspects of data set merging)
- Limited feature changes with this release—most significant will be new accumulator options (e.g., fluence accumulation intervals)

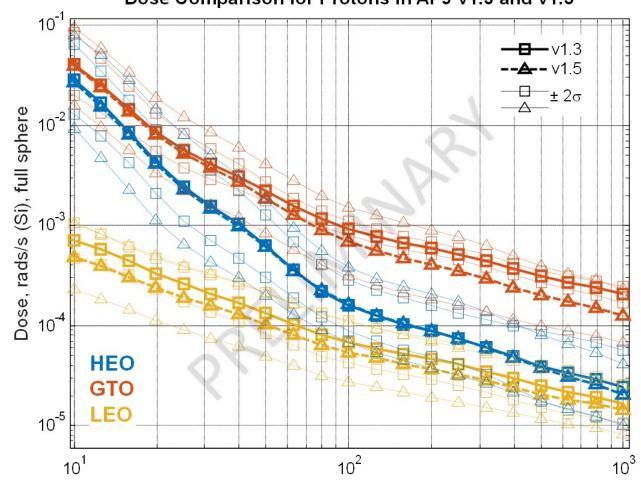
satellite	orbit	time period	instrument	species	energy
Van Allen Probes A & B	GTO (800 x 30600 km, 10°)	Aug 2012 – Dec 2016	RPS (Relativistic Proton Spectrometer)	protons	>58 MeV ~2 GeV
			REPT (Relativistic Electron Proton Telescope)	protons	20 – 100 MeV
				electrons	1.5 – 30 MeV
			MagEIS	electrons	30 keV – 7 MeV
Azur	384 x 3145 km, 103°	Nov 1969 – Mar 1970	EI-88 telescope	protons	1.5 – 104 MeV
TWINS 2	Molniya (1000 x 39500 km, 63°)	Apr 2008 – Nov 2016	HILET	protons	6 – 30 MeV



V1.50 Changes - AP9 Flux Maps

200 MeV Proton Flux Ratios

- AP9 adds Azur, HiLET and Van Allen Probes data
- These new data generally bring down the inner zone fluxes
- Especially large changes >150
 MeV where RPS data represent
 the first clean observations in the
 inner zone up to 2 GeV

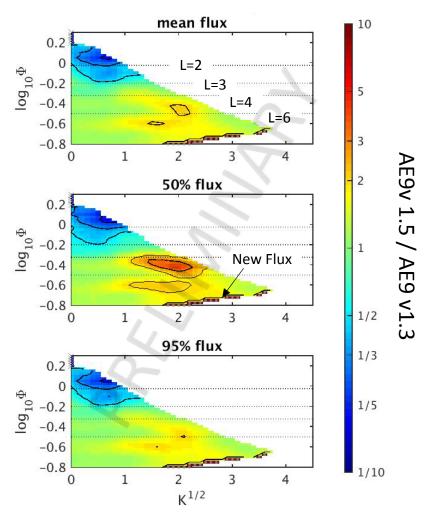


V1.50 Changes – AP9 Dose

Dose Comparison for Protons in AP9 v1.3 and v1.5

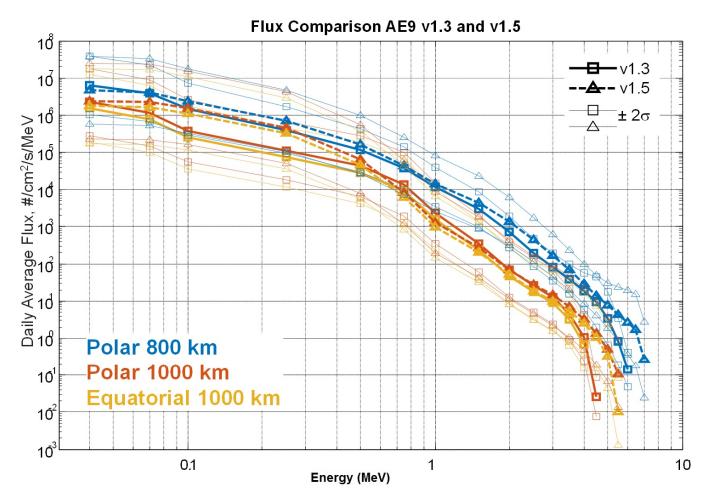
Spherical Shielding Depth, mils Al

- Similar dose in HEO orbit
- Lower dose in GTO for depths >30 mils
- Lower dose in LEO for all depths
- Larger error bars in all orbits



V1.50 Changes – AE9 Flux Maps

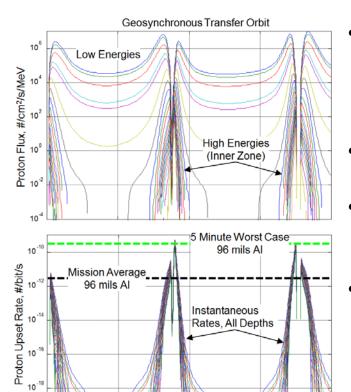
1 MeV Electron Flux Ratios


- AE9 adds Van Allen Probes data
- These new data generally bring down the inner zone fluxes
- Some localized higher fluxes

V1.50 Changes – AE9 in LEO

- Fluxes are higher <300 keV for both 1000 km orbits
- Fluxes are a bit higher at all energies in 800 km orbit
- Error bars are larger

IRENE


- Starting with V1.50, AE9/AP9 now includes international contributions (Azur data)
- To recognize the internationalization of the model, we will begin transition to a new name: International Radiation Environment Near Earth (IRENE)
- AE9/AP9 v1.5 is then also known as AE9/AP9-IRENE
- We will use both names for a few releases, and eventually switch to IRENE only
- In addition to Azur data, ESA is working hard to produce a Monte Carlo solar proton model that we can integrate with AP9

Kernel-Based Effects Calculation

12:00

Sample Day

18:00

00:00

06:00

 Proton SEE rate calculation, proton displacement damage, electron internal charging currents, etc.

Example: Proton SEE rate calculation

User provides Weibull or Bendel Parameters and desired shielding depths

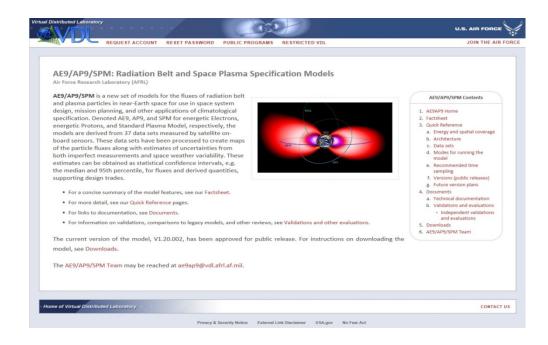
Utility computes "kernel" that transforms proton flux to SEE rate behind shielding

Model will be able to output

- Instantaneous SEE rate
- Mission average SEE rate
- Worst case SEE rate on desired timescale

Version 2.00

- Major feature changes:
 - Sample solar cycle—introduces a full solar cycle reanalysis as a flythrough option
 - New module frameworks for e.g. plasma species correlations, SPM stitching with AE9/AP9, auroral electrons, additional coordinates for MLT variation in SPM
 - AP9 improvements: solar cycle variation in LEO, east-west effect
 - Incorporate untrapped solar protons with statistics
- New data
 - Van Allen Probes/RPS, MagEIS & REPT protons and electrons
 - PAMELA protons—addresses high energy proton spectra
 - Other international data sets: possibilities include Cluster/RAPID-IIMS, ESA SREMs, CORONAS, NINA, Akebono/EXOS-D, SAC-C, Jason2, PROBA-V/EPT



AE9/AP9 Website

- We have launched a dedicated web site for the AE9/AP9 project hosted by AFRL's Virtual Distributed Laboratory:
 - https://www.vdl.afrl.af.mil/programs/ae9ap9
- The latest version of the model may be downloaded from this site after creating an account
- Summaries and model documentation are also available (no account needed)
- Future news and releases will be announced through the website

Summary

- AE9/AP9/SPM provides radiation environment specification to meet the needs of modern designers
- Successive releases demonstrate maintainability
- Future releases will include new data sets and new features, driven by user needs
- Comments, questions, etc. are welcome and encouraged!
- Please send feedback, requests for model or documentation, etc., to (copy all):
 - Bob Johnston, Air Force Research Laboratory, <u>AFRL.RVBXR.AE9.AP9.Org.Mbx@us.af.mil</u>
 - Paul O'Brien, Aerospace Corporation, <u>paul.obrien@aero.org</u>
- Model downloads, documentation, news are available at AFRL's Virtual Distributed Laboratory: https://www.vdl.afrl.af.mil/programs/ae9ap9

