Recent Updates to the AE9/AP9/SPM Radiation Belt and Space Plasma Specification Model

15 July 2015

W. R. Johnston¹, T. P. O’Brien², S. L. Huston³, G. P. Ginet⁴, and T. B. Guild²

¹Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, NM
²Aerospace Corporation
³Atmospheric and Environmental Research, Inc.
⁴MIT Lincoln Laboratory
Outline

• Background on AE9/AP9/SPM model
• Release of V1.20 with new data and features
• New validation results
• Future version plans
• Dedicated web site for model distribution
What is AE9/AP9/SPM?

• AE9/AP9/SPM specifies the natural trapped radiation environment for satellite design and mission planning
• It improves on legacy models to meet modern design community needs:
 – Uses 37 long duration, high quality data sets
 – Full energy and spatial coverage—plasma added
 – Introduces data-based uncertainties and statistics for design margins (e.g., 95th percentile)
 – Dynamic scenarios provide worst case estimates for hazards (e.g., SEEs)
 – Architecture supports routine updates, maintainability, third party applications
• Version 1.00 released in 2012
• Version 1.20 released in March 2015
Coverage and Application

- Expanded energy coverage: keV plasma to GeV protons
- Spatial coverage for all orbit regimes, including tailored coverage for high resolution in LEO

<table>
<thead>
<tr>
<th>Model</th>
<th>AE9</th>
<th>AP9</th>
<th>SPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>e<sup>-</sup></td>
<td>H<sup>+</sup></td>
<td>e<sup>-</sup>, H<sup>+</sup>, He<sup>+</sup>, O<sup>+</sup></td>
</tr>
<tr>
<td>Energies</td>
<td>40 keV—10 MeV</td>
<td>100 keV—2 GeV (V1.20)</td>
<td>1—40 keV (e<sup>-</sup>); 1.15—164 keV (H<sup>+</sup>, He<sup>+</sup>, O<sup>+</sup>)</td>
</tr>
<tr>
<td>Range in L</td>
<td>0.98 < L<sup>*</sup> < 12.4</td>
<td>0.98 < L<sup>*</sup> < 12.4</td>
<td>2 < L<sub>m</sub> < 10</td>
</tr>
</tbody>
</table>

- Model provided with GUI and CmdLine access
- Documentation includes recommended modes for typical use cases
 - Best practices document with more details is forthcoming
Data Sets—Temporal Coverage

- Protons
 - CRRES/PROTEL
 - SS-3/Telescope
 - ICO/Dosimeter
 - HEO-F3/Dosimeter
 - TSE-5/CEASE
 - POLAR/IPS
 - POLAR/HISTp
 - TACSAT-4/CEASE
- Electrons
 - CRRES/MEA/HEEF
 - ICO/Dosimeter
 - HEO-F3/Dos/met
 - HEO-F1/Dos/met
 - TSE-5/CEASE
 - POLAR/HISTe
 - GPS/BDD2 N518
 - GPS/BDD2 N528
 - GPS/BDD2 N533
 - LANL-GEO/SOPA L1990-095
 - LANL-GEO/SOPA L1991-095
 - LANL-GEO/SOPA L1991-095
 - SCATHA/SCB
 - SAMPEX/PET
- Plasma
 - POLAR/CAMMICE/MICS/HYDRA
 - LANL-GEO/MPA L1990-095
 - LANL-GEO/MPA L1990-095
 - LANL-GEO/MPA L1991-080
 - LANL-GEO/MPA L1994-084
 - LANL-GEO/MPA L1997A

New in V1.20

AP8 released
AE8 released

Distribution A: Approved for public release; distribution unlimited. 377ABW-2015-0532
Version 1.20 – Database Updates

• New data set (first new data to be added):
 – TacSat-4/CEASE proton data—captures new observations of elevated 1-10 MeV protons
 – Additional plasma data: THEMIS/ESA

• New electron templates
 – Improvements for inner zone electrons and for >3 MeV spectra

• New proton templates
 – Incorporate E/K/Φ and E/K/h_{min} profiles observed by RBSP/Relativistic Proton Spectrometer
 – Extend proton energies to 2 GeV

• Low altitude taper
 – Force fast fall-off of flux for h_{min} < 100 km.
 – Cleans up radial scalloping at altitudes below ~1000 km
V1.20 Feature Updates

- Feature improvements
 - More options for orbit element input and coordinates
 - Third party developers guide
 - Pitch angle tool—make internal pitch angle calculations accessible to users
 - More options for unidirectional flux queries
 - Easy extraction of adiabatic invariant coordinates
 - Improved error messages
AP9 V1.20 Validation—SAA

>35 MeV protons

SAA flux profiles are improved in V1.20 as compared to POES observations

Ratio of AP9 V1.20 median to POES data

>35 MeV protons, E-W SAA profile

>35 MeV protons, N-S SAA profile

East-west profile

North-south profile

POES MEPED background

electron contamination

electrons contamination

POES 15 obs. mean, 1998-2011

AP9 V1.2, mean of 40 MCs, run for 2005

AP9 V1.2, mean of 40 MCs, run for 2005

POES 15 obs. mean, 1998-2011

POES 15 obs. mean, 1998-2011
AP9 Validation in LEO

- Review by ESA showed discrepancies among AP9, AP8, and data (including Azur)
- Extensive review by team:
 - We trust data currently in AP9
 - AP9 model accurately represents these data sets
 - We also trust Azur data
 - Most likely explanation: Azur and S3-3 represent two different geophysical states
 - We expect that inclusion of Azur data will decrease AP9 fluxes and increase error bars
 - Need to explain discrepancies and natural variability
Next versions

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.30 (~Aug 2015)</td>
<td>Addresses an issue affecting AP9 V1.20 Monte Carlo runs for long missions (>3-4 years)</td>
</tr>
<tr>
<td></td>
<td>• Issue does not affect mean runs, perturbed mean runs, or short MC runs</td>
</tr>
<tr>
<td>V1.35 (~Sep 2015)</td>
<td>Permits parallelization across scenarios, improving run times</td>
</tr>
<tr>
<td></td>
<td>• Useful for long mission MC runs</td>
</tr>
<tr>
<td>V1.50 (2016)</td>
<td>New data:</td>
</tr>
<tr>
<td></td>
<td>• Protons: Azur, Van Allen/RPS, MagEIS & REPT</td>
</tr>
<tr>
<td></td>
<td>• Electrons: Van Allen/MagEIS & REPT, DEMETER/IDP</td>
</tr>
<tr>
<td></td>
<td>• Plasma: SCATHA/SC8, AMPTE/CCE & CHEM</td>
</tr>
<tr>
<td></td>
<td>New features:</td>
</tr>
<tr>
<td></td>
<td>• Introduce kernel-based methods for fast dose/effects calculations</td>
</tr>
<tr>
<td></td>
<td>• Fix flux-to-fluence calculations to cover variable time steps—supports optimizing time steps for shorter run times</td>
</tr>
<tr>
<td></td>
<td>• Allow selection of time period for calculation of fluence—supports different time periods for different effects</td>
</tr>
</tbody>
</table>
Kernel-Based Effects Calculation

- User provides Weibull or Bendel Parameters and desired shielding depths
- Utility computes “kernel” that transforms proton flux to SEE rate behind shielding (CSDA degraded)
- SEE rates computed from AP9 proton fluxes:
 - Instantaneous rate
 - Mission average rate
 - Worst case rate on desired timescale
Version 2.0

• Major feature changes:
 – Sample solar cycle—introduces a full solar cycle reanalysis as a flythrough option
 – New module frameworks for e.g. plasma species correlations, SPM stitching with AE9/AP9, auroral electrons, additional coordinates for MLT variation in SPM
 – AP9 improvements: solar cycle variation in LEO, east-west effect
 – Incorporate untrapped solar protons with statistics
• New data
 – Van Allen Probes/RPS, MagEIS & REPT protons and electrons
 – PAMELA protons—addresses high energy proton spectra
 – Other international data sets: possibilities include Cluster/RAPID-IIMS, ESA SREMs, CORONAS, NINA, Akebono/EXOS-D, SAC-C, Jason2
• Subsequent releases will include new data: DSX/SWx, ERG
• Int’l. collaborators aboard and new model name: IRENE: International Radiation Environment Near Earth
AE9/AP9 Website

- We have launched a dedicated web site for the AE9/AP9 project hosted by AFRL’s Virtual Distributed Laboratory: https://www.vdl.afrl.af.mil/programs/ae9ap9

- The latest version of the model may be downloaded from this site after creating an account

- Summaries and model documentation are also available (no account needed)

- Future news and releases will be announced through the website
Summary

- AE9/AP9/SPM provides radiation environment specification to meet the needs of modern designers
- Release of version 1.20 this year demonstrates maintainability
- Future releases will include new data sets and new features, driven by user needs
- Model downloads, documentation, news are available at AFRL’s Virtual Distributed Laboratory: https://www.vdl.afrl.af.mil/programs/ae9ap9
Thank You