

Air Force Research Laboratory

The AE9/AP9 Next Generation Radiation Specification Models – Challenges

17 September 2014

S. L. Huston¹, T. P. O'Brien², W. R. Johnston³

¹Atmospheric and Environmental Research, Inc.

²Aerospace Corporation

³Air Force Research Laboratory,

Space Vehicles Directorate, Kirtland AFB, NM

Distribution A: Approved for public release; distribution unlimited. 377ABW-2014-0734.

Outline

- Current Status: V1.2
 - Changes from V1.0
 - Validation results
- Future versions: V1.5 and V2.0
- Challenges
- Summary

Version 1.2 (I)

- New data sets (first new data to be added):
 - TacSat-4/CEASE proton data—captures new observations of elevated 1-10 MeV protons
 - Additional plasma data: THEMIS/ESA
- New electron templates
 - Improvements for inner zone electrons and for >3 MeV spectra
- New proton templates
 - Incorporate E/K/
 and E/K/h_{min} profiles observed by RBSP/Relativistic Proton Spectrometer
 - Extend proton energies to 2 GeV
- Low altitude taper
 - Force fast fall-off of flux for h_{min} < 100 km.
 - Cleans up radial scalloping at altitudes below ~1000 km

Version 1.2 (II)

- Feature improvements
 - More options for orbit element input and coordinates
 - Third party developers guide (available now)
 - Pitch angle tool—users can query directional fluxes by pitch angle
 - Option to access/output internal magnetic field quantities and adiabatic invariants
- Public release in fall 2014

L-Profiles AP9 v1.0

Distribution A: Approved for public release; distribution unlimited. 377ABW-2014-0734.

Distribution A: Approved for public release; distribution unlimited. 377ABW-2014-0734.

AE9 V1.2 Model Comparison

- Inner zone electrons at E>3 MeV are lower in V1.2 than V1.0
 - Result is more consistent with Van Allen Probe results

AP9 V1.2 Validation (I)

Distribution A: Approved for public release; distribution unlimited. 377ABW-2014-0734.

AE9 V1.2 Validation

- LEO: Fluence vs. time from AE9 V1.2 MCs, POES data (multiple years), and DEMETER
 - Range of AE9 MC results is comparable to range of annual POES data

- GEO: Fluence vs. time from AE9
 V1.2 MCs and GOES data for full solar cycle
 - GOES data compares well to AE9 median when a full solar cycle is represented

Version 1.5

- Expected public release in late 2015
- New data:
 - Protons: Azur, Van Allen/MagEIS & REPT
 - Electrons: **DEMETER/IDP**, Van Allen/MagEIS & REPT
 - Plasma: SCATHA/SC8, AMPTE/CCE & CHEM
- New features
 - Introduce kernel-based methods for fast dose/effects calculations
 - Fix flux-to-fluence calculations to cover variable time steps—supports optimizing time steps for shorter run times
 - Capability for parallelization across scenarios—improves run times
 - IGRF update (if new coefficients are available in time)
 - Allow selection of time period for calculation of fluence—supports different time periods for different effects

International collaborators on board—with new model name: IRENE

- International Radiation Environment Near Earth

Version 2.0

- Major feature changes:
 - Sample solar cycle—introduces a full solar cycle reanalysis as a flythrough option
 - New module frameworks for e.g. plasma species correlations, SPM stitching with AE9/AP9, auroral electrons, additional coordinates for MLT variation in SPM
 - AP9 improvements: solar cycle variation in LEO, east-west effect
 - Incorporate untrapped solar protons with statistics
 - Parallelization capability for runs on clusters—needed to speed up long runs
 - Mac OSX build?
- New data
 - Van Allen/MagEIS & REPT protons and electrons
 - PAMELA protons—addresses high energy proton spectra
 - Other international data sets: possibilities include Cluster/RAPID-IIMS, ESA SREMs, CORONAS, NINA, Akebono/EXOS-D, SAC-C, Jason2
- Subsequent releases will include new data
 - DSX/SWx, ERG

Challenges

- Data inadequacies
- Data Model Comparisons
- IGRF extrapolation
- Low Altitude Behavior
- Integrating Solar Protons
- Sample Solar Cycle
- Arbitrary Radiation Effects
- Stitching Domains
- Plasma Coordinate Systems
- Shabansky Orbits
- Speed / Parallelization

Data Inadequacies

- Plasma composition
 - Helium, Oxygen only from Polar CAMMICE/MICS
 - Looking at AMPTE, CRRES, Van Allen Probes
- Inner zone electrons
 - Van Allen Probes see no electrons above ~700 keV
 - Past measurements are not clear on this
 - Is this a temporary state, or is this typical?
- Low altitude gradients are difficult to measure
 - Small differences in local pitch angle at high altitude lead to large differences in flux at low altitude
 - Low altitude flux is often confined to very near 90° pitch angle
- Data does not cover everywhere
 - Physics-based and assimilative models can teach us how to extrapolate
- Data cannot provide adequate correlation in space and time
 - Physics-based and assimilative models can provide correlations

Single-Data-Set vs. Model

Median and 1- σ for each data set and the model

- It is common to compare a single data set to AE9/AP9 and draw some kind of conclusion, e.g., "AP9 is too high"
- This is typically incorrect
- In the example at left from SPME:
 - The data sets spread over about a factor of 10
 - -The model error is about a factor of 3
 - The model error is *small* because there are many data sets
- If the model error covered the spread of the data *it would never shrink no matter how many data sets we added*
- The model error bars are designed so that a model update with a new data set will still fall within the error bars of the prior model release

We do not expect any individual data set to fall within the model error bars

IGRF Extrapolation

- **IGRF** only extrapolates 5 years
- Mission planners plan up to 25 years ahead
- We need a way to extrapolate IGRF many years into the future
- Physics-based prediction is very complicated because the Earth's Dynamo is chaotic
- One Empirical Approach
 - Extrapolate each coefficient N years into the future
 - N is unique for each coefficient
 - N depends on how well a backward linear projection matches historical data

Low Altitude Behavior

- LEO Protons vary systematically with the solar cycle
 - No comprehensive, quantitative empirical model of this variation exists
 - We plan to use SIZM + POES
 - Allow model statistical parameters to vary with F10.7
 - Generate Monte Carlo scenarios of F10.7
- LEO Electrons vary with longitude
 - Depends on level of magnetic activity filling the drift loss cone
 - Will require addition of 4th dimension (dipole longitude) to E/K/h_{min} coordinate system

- AE9/AP9 exhibits a number of difficult challenges
- We are working on some, and have ideas for how to address others
- We cannot do it all: funds, manpower, expertise
- Collaborate with us, please!

BACKUP MATERIAL

Distribution A: Approved for public release; distribution unlimited. 377ABW-2014-0734.

- Solar protons contribute to proton effects addressed by AP9:
 - Total Ionizing Dose
 - Displacement Damage
 - Single Event Effects
- Statistical laws disallow adding 95th percentiles from AP9 and a solar model to obtain a combined 95th percentile
 - The statistical distributions must be combined before computing percentiles
 - Combination must include dynamics for Single Event Effects
- We are working with ESA to resolve this problem
 - Developing a Monte-Carlo method for solar protons
 - We will combine that with a geomagnetic cutoff model to limit solar proton access
 - This will enhance mean, perturbed mean, and Monte Carlo runs of AP9

Sample Solar Cycle

- Capture dynamics of realistic 11+ year solar cycle via data assimilative reanalysis
- "Fly through" this simulated dynamic environment as a check on Monte Carlo results
- Use the sample solar cycle to improve correlation matrices that drive Monte Carlo dynamics
- Use the sample solar cycle to help "fill in" flux maps where observations are missing

From Maget et al., Space Weather, 2007

Arbitrary Radiation Effects

- AE9/AP9 currently only provides Total Dose via ShielDose2 for idealized shielding
- Users need to consider other effects:
 - Specific shielding geometry or material
 - Displacement Damage
 - Single Event Effects
 - Internal charging
- Some of these phenomena can be reduced to linear transfer functions (Greens functions)
 - We are developing a generic "Kernel" capability to allow a user-supplied effect via the Greens function
 - Applies only to linear effects
 - First kernel: displacement damage in Si behind spherical Al shields
 - Second kernel: Proton SEE via Weibull response + Al Shielding

Stitching Domains

- AE9/AP9 has 3 distinct domains:
 - High altitude energetic particles: $E/K/\Phi$ grid, E > ~40 keV
 - Low altitude energetic particles: $E/K/h_{min}$ grid, E > ~40 keV
 - Single plasma grid: $E/\alpha_{eq}/L_m$ grid, E < ~40 keV
- The high-low altitude stitching is done when the model data tables are computed before runtime
- The plasma energetic particle stitching is done in post-processing after runtime:
 - Potentially invalid statistics!
 - Mismatch for perturbed means
- We need to switch to a stitching approach that applies at run time
- This will require extending Monte Carlo capabilities to plasma energies (currently only available for energetic particles)
- This is a significant architecture change

- All plasma are currently modeled in a $E/\alpha/L_m$ system with no MLT dependence
- We will add a 4th dimension for MLT (e.g., to address Sun-synchronous orbits)
- We also will eventually need auroral and plasma sheet coordinate systems and potentially a magnetosheath system

- AE9/AP9 has an ad-hoc outer limit defined by Shabansky orbits in Olson-Pfitzer Quiet
 - The flux there is not zero, but how do we represent it?
 - How should we define the Shabansky limit? It depends on K and Φ
- The AE9/AP9 software can be very slow
 - Speed up via parallelization
 - Speed up via optimization (faster sparse matrices?)

- V1.5 will include AE9/AP9 capability to use independently-calculated radiation effects for faster effects results in the AE9/AP9 environment:
 - User precomputes desired effect vs. depth/particle/energy for a particular material/geometry/component, using independent particle simulation code
 - Results are formatted as a "kernel" for import into AE9/AP9/SPM
 - AE9/AP9/SPM environment plus effects kernel yields rapid calculations of specific effects
- Sample kernel for single event effects is in development
- Provides ability to rapidly obtain AE9/AP9 environment effects for specific components

AP9 V1.2 Validation (II)

>35 MeV protons

Distribution A: Approved for public release; distribution unlimited. 377ABW-2014-0734.

Points of Contact

- Comments, questions, etc. are welcome and encouraged!
- Please send feedback to (copy all):
 - Bob Johnston, Air Force Research Laboratory, <u>AFRL.RVBXR.AE9.AP9.Org.Mbx@kirtland.af.mil</u>
 - Paul O'Brien, Aerospace Corporation, paul.obrien@aero.org
 - Gregory Ginet, MIT Lincoln Laboratory, gregory.ginet@ll.mit.edu
- Information and discussion forum available on NASA SET website: http://lws-set.gsfc.nasa.gov/radiation_model_user_forum.html
- V1 code will eventually be available on the NASA SET website
 - In the meantime contact Gregory Ginet, MIT Lincoln Laboratory, gregory.ginet@ll.mit.edu

Thank You

