

Air Force Research Laboratory

Image: Construction of the second s

Comparisons of AE9 and AP9 With Legacy Trapped Radiation Models

IEEE Nuclear and Space Radiation Effects Conference 9 July 2013

S. L. Huston¹, G. P. Ginet², W. R. Johnston³

¹Atmospheric and Environmental Research, Inc. ²MIT Lincoln Laboratory

³Air Force Research Laboratory,

Space Vehicles Directorate, Kirtland AFB, NM

- Trapped electron and proton models AE8/AP8 (or Ax8) have been *de facto* industry standards for > 30 years
- Industry practice has used large design margins to compensate for uncharacterized uncertainties in flux predictions
- New AE9/AP9 models specify uncertainty, leading to the possibility of more meaningful margins
- Objective of this talk is to provide an idea of the differences and similarities between Ax8 and Ax9
 - Global comparisons of fluxes
 - Orbital comparisons: flux spectra, dose vs. depth

What is AE9/AP9?

- AE9/AP9 specifies the natural trapped radiation environment for satellite design
 - Energetic electrons, protons, plasma
- Its unprecedented coverage in particles and energies address the major space environmental hazards
- Newer, high-quality data sets with extensive cross-calibration, validated against independent data sets
- AE9/AP9 includes uncertainties and dynamics that have never been available for use in design
 - The uncertainty allows users to estimate design margins (95 percentile rather than arbitrary factors)
 - Dynamic scenarios allow users to create worst cases for internal charging, single event effects, and assess mission life

- "Turn-Key" system for ingesting new data sets ensures that the model can be updated easily
- V1.0 cleared for public release on 5 September 2012
 - Current version is 1.04, version 1.1 expected in July 2013

Architecture Overview

Flux maps

- Derive from empirical data
 - Systematic data cleaning applied
- Create maps for median and 95th percentile of distribution function
 - Maps characterize nominal and extreme environments
- Include error maps with instrument uncertainty
- Apply interpolation algorithms to fill in the gaps

Statistical Monte-Carlo Model

- Compute spatial and temporal correlation as spatiotemporal covariance matrices
 - From data (V 1.0)
 - Use one-day (protons) and 6 hour (electrons) sampling time (V 1.0)
- Set up Nth-order auto-regressive system to evolve perturbed maps in time
 - Covariance matrices give SWx dynamics
 - Flux maps perturbed with error estimate give instrument uncertainty

User application

Mission time

75th

50th

Dose

User's orbit

- Runs statistical model N times with different random seeds to get N flux profiles
- Computes dose rate, dose or other desired quantity derivable from flux for each scenario
- Aggregates N scenarios to get median, 75th and 90th confidence levels on computed quantities
- Distribution A. Approved for public release; distribution unlimited. 377ABW-2013-0574

What Type of Run

Spec Туре	Type of Run	Duration	Notes
Total Dose	Perturbed Mean	Several orbits or days	SPME+AE9, SPMH+AP9+Solar
Displacement Damage (proton fluence)	Perturbed Mean	Several orbits or days	AP9+Solar
Proton SEE (proton worst case)	Monte Carlo	Full Mission	AP9+Solar
Internal Charging (electron worst case)	Monte Carlo	Full Mission	AE9 (no SPME)

- Run 40 scenarios through either static Perturbed Mean or dynamic Monte Carlo
- Compute statistics by comparing results across scenarios (e.g., in what fraction of scenarios does the design succeed)
- Do not include plasma (SPM*) models in worst case runs

- Global plots
 - Meridional slices showing Ax8 vs. Ax9
 - Meridional slices showing ratio Ax9/Ax8
- Orbital integration for representative orbits
 - Monte Carlo fluence spectra
 - Comparison of Ax9 to Ax8 and CRRESELE/CRRESPRO
 - Dose vs. Depth

AE9/AP9 Compared to AE8/AP8

10⁻³x

5

10

AE9 V1.1/AE8 flux ratio, 9 JAN 2012, polar slice at long=108 E/72 W E=0.25 MeV, log₁₀ of flux ratio

-10

-10

-5

0

30 MeV

0

1

2 3 4 5

1

100x

10x

1x

0.1x

10⁻²x

10⁻³x

-1.5

-1

-0.5

0

1

-4 🗉

-2

-3

-4 L -5

-4 -3 -2 -1 0

-4 -3 -2

-1

Electron Spectra: LEO

 $800 \text{ km} \times 800 \text{ km} \times 90^{\circ}$

Proton Spectra: LEO

 $800 \text{ km} \times 800 \text{ km} \times 90^{\circ}$

Dose vs. Depth: LEO

Electron Spectra: GTO

30,600 km x 500 km x 10°

Proton Spectra: GTO

30,600 km x 500 km x 10°

Dose Vs. Depth: GTO

Distribution A. Approved for public release; distribution unlimited. 377ABW-2013-0574

Electron Spectra: GPS

20,200km x 20,200km x 55°

Proton Spectra: GPS

20,200km x 20,200km x 55°

Dose vs. Depth: GPS

Discussion (1)

- Differences depend on individual orbit
- General morphology (AE9):
 - AE9 outer zone more intense, extends closer to Earth
 - AE9: more intense outer zone horns at low altitude
 - AE9 higher at higher energies (> 3 4 MeV)
 - Largest differences are in regions of lowest fluxes
- General morphology (AP9)
 - AP9 fluxes generally higher, especially at low altitude
 - Low energies consistent w/measurements by Vampola
 - High energies validated through extensive cross-calibration and comparison w/independent data sets
 - AP9 higher in heart of inner zone
 - Largest differences are in regions of lowest fluxes

- There are large differences at LEO (electrons & protons)
 - Direct comparisons are difficult here (large spatial gradients)
 - Generally higher fluxes of electrons and protons
 - Differences are generally consistent with measurements (e.g., POES protons, DEMETER electrons)
 - Location of SAA is important (e.g. for low inclination orbits)
- Dose at depth generally higher with Ax9
 - largest difference in LEO
- Uncertainty in flux due to space weather and measurement uncertainty can be a factor of 5 - 10
- Model uncertainty estimates provide ability to trade risk vs. shielding mass, etc.

Discussion (3)

- Models will be periodically updated with new data
 - TacSat-4 (MEO, LEO protons)
 - Van Allen Probes (GTO, electrons, protons)
 - International data sets
- Review paper published in Space Science Reviews: <u>http://link.springer.com/article/10.1007/s11214-013-9964-y</u>
- Please send feedback to (copy all):
 - Bob Johnston, Air Force Research Laboratory, AFRL.RVBXR.AE9.AP9.Org.Mbx@kirtland.af.mil
 - Paul O'Brien, Aerospace Corporation, paul.obrien@aero.org
 - Gregory Ginet, MIT Lincoln Laboratory, gregory.ginet@ll.mit.edu
- Information and discussion forum available on NASA SET website:
 - http://lws-set.gsfc.nasa.gov/radiation_model_user_forum.html

Thank You

Distribution A. Approved for public release; distribution unlimited. 377ABW-2013-0574