AE9, AP9, and SPM: New Features and Future Version Plans

30 June 2013

W. R. Johnston¹, T. P. O’Brien², G. P. Ginet³, C. J. Roth⁴, R. A. Quinn⁴, P. Whelan⁴, S. L. Huston⁴, and T. B. Guild²

¹Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, NM
²Aerospace Corporation
³MIT Lincoln Laboratory
⁴Atmospheric and Environmental Research, Inc.
Recent AE9/AP9 Improvements

CmdLineAe9Ap9 Program
- Support more ShieldDose2 options
- Improved Linux compiler optimization settings
- Documented command-line options
- Multiple file limit resolved
- MJD conversion fixed

User’s Guide Document
- Additional information provided for
 - ShieldDose2 model parameters
 - Legacy model ‘advanced’ options
 - Model performance tuning
 - Orbit definition parameters
 - Coordinate system details
 - Modified Julian Date conversions

Graphical User Interface
- Clarified labels & error messages
- Added more ‘tooltip’ information
- Various GUI behavior fixes

New Utility Programs
- **PlasmaIntegral**
 - Adjusts Plasma integral flux calculations (for non-GUI runs)
- **CoordsAe9Ap9**
 - Calculates ‘Adiabatic Invariant’ coordinates from satellite ephemeris
Comparison of AE8/AP8 (legacy) models to external implementations

Model Run Parameters
- Ax8 in CmdlineAe9Ap9, IRBEM and SPENVIS
- CRRES satellite orbit (GTO)
- Fixed Epoch & Shift SAA options ‘on’
- 28 Feb 2005 (arbitrary), 24 hours, Δt=120 sec

Comparison Results
- Most model results *nearly* matching
 - Different magnetic field models used
- Integral Flux results match
- Differential Flux results near match
 - Differences due to calculation method
- ShieldDose2 results mostly match
 - Slight offset due to Diff Flux differences

Full report documents all findings
We recently identified an error affecting some cross calibrations in AE9
- Incorrect data set version was used in CRRES to LANL-GEO cross calibration

Result affects relative calibration of LANL-GEO/SOPA datasets, along with error estimates for LANL-GEO/SOPA, CRRES, and POLAR datasets

Effect is likely small:
- GEO flux ~20% greater for E>1 MeV
- GEO flux ~20-50% less for E<0.5 MeV
- Plot illustrates estimated effect on GEO electron spectra

Expected public release in July 2013
Version 1.2

- New data set (first new data to be added):
 - TacSat-4/CEASE proton data—captures new observations of elevated 1-10 MeV protons
 - Additional plasma data, TBD but likely THEMIS/ESA

- New electron templates
 - Improvements for inner zone electrons and for >3 MeV spectra

- Feature improvements
 - More options for orbit element input and coordinates
 - Fix flux-to-fluence calculations to cover variable time steps—supports optimizing time steps for shorter run times
 - Allow selection of time period for calculation of fluence—supports different time periods for different effects
 - Mac OSX build

- Expected public release in January 2014
Version 1.5

• New data:
 – Protons: Azur, Van Allen/MagEIS & REPT
 – Electrons: DEMETER/IDP, Van Allen/MagEIS & REPT
 – Plasma: SCATHA/SC8, AMPTE/CCE & CHEM

• New features
 – Parallelization capability for runs on clusters—needed to speed up long runs
 – Pitch angle tool—make internal pitch angle calculations accessible to users

• Expected public release in October 2014
• International collaborators on board—with new model name
Version 2.0

• Major feature changes:
 – Standard solar cycle—introduces a full solar cycle reanalysis as a flythrough option
 – New module frameworks for e.g. plasma species correlations, SPM stitching with AE9/AP9, auroral electrons, additional coordinates for MLT variation in SPM
 – AP9 improvements: solar cycle variation in LEO, east-west effect
 – Improved algorithms for faster run times

• New data
 – Van Allen/MagEIS & REPT protons and electrons
 – PAMELA protons—addresses high energy proton spectra
 – Other international data sets: possibilities include Cluster/RAPID-IIMS, ESA SREMs, CORONAS, NINA, Akebono/EXOS-D, SAC-C, Jason2

• Expected public release in December 2015
• Subsequent releases will include new data
 – DSX/SWx, ERG