

Air Force Research Laboratory

Integrity **★** Service **★** Excellence

Coordinates and Templates

10 October 2012

Stuart L. Huston Boston College For the Air Force Research Laboratory Space Vehicles Directorate Kirtland Air Force Base, N.M.

- Introduce coordinate systems for AE9/AP9/SPM
 - What coordinates are used
 - How they're computed
- Introduce concept of templates
 - What are they
 - How are they used
- Give examples of constructing templates

- AE9/AP9 use coordinates based on adiabatic invariants
 - Particle energy E
 - Modified 2nd adiabatic invariant $K = \int_{m}^{m} \left[B_m B(s) \right] ds$,
 - 3rd adiabatic invariant $\Phi = \prod A \cdot dx = \iint B_e \cdot dS$
 - or h_{min}, the minimum altitude on a drift shell
- Two grids
 - Global: K^{1/2} log₁₀ Φ
 - Low-altitude: K^{1/2} h_{min}
- SPM uses a single grid in $L_m \alpha_{eq}$

- Calculations performed with modified IRBEM-LIB
 - calculates h_{min}, defined as minimum altitude on a drift shell
 - h_{min} provides better resolution of large flux gradients at low altitudes, where flux is controlled by atmospheric neutral density
- Olson-Pfitzer Quiet 1977 + IGRF magnetic field
- For each time-tagged ephemeris point we calculate K, Φ, h_{min} (for appropriate pitch angle)

- Other parameters needed for completeness:
 - L_m , L*, MLT, B_{local} , B_{min}
- Φ and h_{min} can also be computed using neural network
 - allows calculation of Φ and h_{min} nearly as quickly as L_{m}
- Approximate methods developed to convert K/Φ to/from B/L

Flux Maps in the Two Grids

K-Φ Grid

- Templates are a-priori estimates of the shape of the θ distribution derived from
 - examination of data sets
 - physics-based modeling
 - or other prior knowledge
- Templates are not models
 - BUT, a model can form a template
 - e.g., AE8, Milillo plasma model
- There may be several templates for each species, representing different dynamic states of radiation belts or different underlying assumptions

- No sensor covers entire space of (Ε, Κ, Φ) or (Ε, Κ, h_{min})
- Templates are used to fill in spatial and spectral gaps
- The use of templates allows us to address correlated errors (e.g., some particular sensor is a little higher than the others in some regions of space).

- For a given data set we:
 - Randomly perturb original $\overline{\underline{\theta}}$ based on a normal distribution characterized by $cov(\delta \underline{\theta})$ in each bin
 - **Compute** $\Delta \underline{\theta} = \overline{\underline{\theta}} \underline{\theta}^{(0)}$
 - Fill in $\Delta \underline{\theta}$ grid using nearest-neighbor averaging & smoothing
 - Compute the full $\overline{\underline{\theta}}$ grid
 - Repeat N times
 - Repeat for all energies
- This process is repeated for each data set ...
- And for multiple templates

Illustration of Building a Whole Flux Map from One Data Set

-0.2

-0.4

-0.6

- Cover full range of (E, K, Φ) or (E, K, h_{min})
- Relatively smooth spatially and spectrally
- Reflect prior knowledge of flux distributions
- Reflect variation and uncertainty

Model	Templates	
AE9	K-hmin: AE8MAX, AE8MIN	K-Phi: CRRES (post-storm, percentiles), AE8MAX, AE8MIN
AP9	K-hmin: S33+CRRES+TSX5 (percentiles)	K-Phi: Polar/IPS+CRRES+TSX5 (percentiles)
SPME	Hydra (all, dawn, dusk, midnight, noon) x(mean, percentiles)	
SPMH	Milillo (all, dawn, dusk, midnight, noon), (Niehof-CAMMICE, Roeder- CAMMICE) x (all, dawn, dusk, midnight, noon) x (mean, percentiles)	
SPMHE	(Niehof-CAMMICE, Roeder-CAMMICE) x (all, dawn, dusk, midnight, noon) x (mean)	
SPMO	(Niehof-CAMMICE, Roeder-CAMMICE) x (all, dawn, dusk, midnight, noon) x (mean)	

- Proton spectra are generally well described by sum of exponentials
- Combine spectra from multiple sensors
 - K-Φ: Polar/IPS, CRRES/Protel, TSX5/CEASE
 - K-h_{min}: S3-3, CRRES/Protel, TSX5/CEASE
- Determine fitting parameters
 - set to nominal values if insufficient data
- Smooth and extrapolate parameters
- Derive template from fits

Smoothing of Parameters

Proton Template Flux Maps

- Highly variable energy spectra
 - exponential (outer belt)
 - power-law (inner belt)
 - "bump on tail" (slot)
- Template sources:
 - AE8
 - CRRES/MEA + CRRES/HEEF (pre- and post-storm)
- Process:
 - Interpolate/extrapolate fluxes in E, K, or Φ
 - Fill in missing bins or energies from nearest neighbors
 - Smooth in K-Φ space

Electron Template Flux Map

- Building templates is as much art as science considerable ad hoc processing
- We aim to capture as much "prior knowledge" as possible
- We particularly welcome templates:
 - Based on physical or semi-empirical models
 - Based on different data sets
 - Reflecting natural variability
 - Including the inner zone and/or atmosphere gradients

