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« PCA spectral model

« Angular response
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\/ Why Spectral Inversion?
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e Science-grade instruments can measure
directional, differential flux with good spectral
and angular resolution

« Most detectors are not science-grade
« wide field of view
 small numbers of integral energy channels

e Spectral inversion allows us to determine
energy spectra from integral-type detectors
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\/ Spectral Inversion: How It Works
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(1) Channel response functions
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(2) Assume a spectral shape
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(3) Integrate (1) with (2) to obtain
channel response to input spectrum
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§‘{ Problem Formulation (1)
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Joo = the locally mirroring directional, differential particle flux
(e.g., in particles/cm?-s-sr-MeV)
F(E:0,p) = angle- and energy-dependent particle angular distribution function
A (E;8)= the angle- and energy-dependent effective area

for the i™ channel of the detector (e.g., in cm?)
6,9 = polar and azimuthal look directions in detector coordinates

0,9 = polar and azimuthal look directions in magnetic coordinates
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§‘{ Problem Formulation (2)

Recast as:
VA= 5tj0°°6(E) f (E)dE +b

y = a vector of observed counts

—_

A = avector of expected counts

ot= integration time

G = a vector of geometric factors (response functions)
f (E) = differential flux at energy E

b = a vector of background counts

Solved by parameterizing f(E)=f(E;q) and_
determining maximum likelihood value of g

e analytical (e.g., power-law, Maxwellian, ...)
e discrete (e.g., PCA)
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From Selesnick, et al., Space Weather, 5, s04003,
doi:10.1029/2006SW00275, 2007.

Power law is a reasonable
approximation between 10 — 100 MeV

I(E,0,0)=b(0,p)E™",

Fit to exponential for E > MeV with fixed
e-folding rate determined from
Selesnick, et al. model

(exp(ql —0, In E) : E < Ebreak
j(E)=1. E -
Joreak €XP| —— , E> Ebreak
1\ EO J
E__ =100 MeV
E, =345 MeV

j _ exp(ql B q2 In Ebreak)
break —
exp (_ Ebreak/EO)
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\‘“/ Selesnick PCA Model

Selesnick Model, K=0

e Selesnick model has fluxes *
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at fixed values of M, K, L*

» Fluxes were interpolated to {7/
a uniform E grid, then gaps ¢, “xin
in K and L* were filled in

« Although energies

extended as low as ~ 1
MeV, 10 MeV was used as a |

Me

flux (#/cm?-s

(I —

lower limit for PCA
» Below this, not all K/L*
values are filled in, resulting |

In a bias towards higher
fluxes
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A\ 4 Principal Components

7
6}
5t
< 4
=}
[
j=2
g st
c
I
Q
= ot
1t
ot
-1 "
0 0
Energy (MeV)
0.8
—— PC#1l
—— PC#2
0.6 H
—— PC#3
—— PC#4
{ —— PC#5 |
0.2 r
ob
-0.2F
Al
-0.4F
-0.6 L :
10 10° 10
Energy (MeV)

PCs well-behaved up
through #5 (except near
1000 MeV)

PC#4 and higher
contribute very little to
variance
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\/ Inversion Results: Actual Counts vs.
N
< Expected Counts

PCA Inversion
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« Comparisons with analytical inversions used 3 PCs

 PCAinversion results in similar reconstruction of expected
counts (PCA may be a little better, at least at high count rates)
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\0'/ Flux Spectra — Analytical vs. PCA

« “Typical” spectra
from analytical and
PCA inversions

« PCA spectral shape
IS generally very
close to analytical,
except near E ., (In
this example the
reverse iIs true)

e Error bars for PCA
are not always this
bad
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\/ Angular Correction
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° Much Of Our data COme from “Typical” Pitch Angle Distribution

wide-angle or omnidirectional
detectors, which sample a
fraction of the local
omnidirectional flux

Need a method to estimate |o
from this “semi-omnidirectional”
flux

o Particle angular distribution
 Angular response of detector

V1.0 used a correction after
performing spectral inversion

For V1.x, we plan to use
combined energy/angular
Inversion as appropriate
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\0'/ Proton Angular Distribution

Function
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y =sin ¢, (equatorial pitch angle) 0

Y.c =Sine¢ . (equatorial loss cone angle)
a,b, j,, Y, are fitting parameters

e Azimuthal variation based on
Lenchek-Singer, function of

« Atmospheric scale height
o Gyroradius
« Magnetic Inclination

protons | 2 -8 -5
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* Instrument response functions as function of
energy (and angle)
e at least threshold energy & geometric factor
 Prior knowledge of spectral shapes
« PCA can provide arational basis
 For angular inversion, also need PAD

« Remember inversion is only valid for range of
Instrument response
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§.{ Implementation
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e Spectral inversion routines have been implemented
In invlib, a C- and MATLAB-callable library (code &
documentation available on SourceForge)

« many options for analytical spectral shapes, as well as
PCA

e outputs include energy spectra, error bars, expected
counts

e Used for TSX5/CEASE, HEO/dos, ICO/dos

 protons used Selesnick PCA model
e electrons used PCA model based on CRRES MEA/HEEF

« New PCA models have been developed based on
AP9 and AE9
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