
 

 

  AE9/AP9/SPM 
Radiation 

Environment 
Model 

Build 
Instructions 

Version 1.30.001 

Approved for public release; distribution is unlimited. 



2 
 

The AE9/AP9/SPM model was developed by the Air Force Research Laboratory in partnership 
with MIT Lincoln Laboratory, Aerospace Corporation, Atmospheric and Environmental 
Research, Incorporated, Los Alamos National Laboratory and Boston College Institute for 
Scientific Research.  
 
AE9/AP9/SPM development team: Wm. Robert Johnston1 (PI), T. Paul O’Brien2 (PI), Gregory 
Ginet3 (PI), Michael Starks1, Stuart Huston4, Tim Guild2, Christopher Roth4, Paul Whelan4, Rick 
Quinn4, Reiner Friedel5, Chad Lindstrom1, Yi-Jiun Su1, Steve Morley5, and Dan Madden6.  
 
To contact the AE9/AP9/SPM team, email  ae9ap9@vdl.afrl.af.mil . 
 
The AE9/AP9/SPM model and related information can be obtained from AFRL's Virtual 
Distributed Laboratory (VDL) website: https://www.vdl.afrl.af.mil/programs/ae9ap9  
 
V1.00.002 release: 05 September 2012 

V1.03.001 release: 26 September 2012  

V1.04.001 release: 20 March 2013  

V1.04.002 release: 20 June 2013 

V1.05.001 release: 06 September 2013  

V1.20.001 release: 31 July 2014 

V1.20.002 release: 13 March 2015 

V1.20.003 release: 15 April 2015 

V1.20.004 release: 28 September 2015 

V1.30.001 release: 25 January 2016 

 

 
 
In a future release of AE9/AP9/SPM, the model will be renamed to be 
          “International Radiation Environment Near Earth” (IRENE). 
 
 
 
Source code copyright 2016 Atmospheric and Environmental Research, Inc. (AER) 

                                                           
1 Air Force Research Laboratory, Space Vehicles Directorate 
2 Aerospace Corporation 
3 MIT Lincoln Laboratory 
4 Atmospheric and Environmental Research, Incorporated 
5 Los Alamos National Laboratory 
6 Boston College Institute for Scientific Research 

mailto:ae9ap9@vdl.afrl.af.mil
https://www.vdl.afrl.af.mil/programs/ae9ap9


3 
 

Build Instructions for AE9/AP9/SPM Radiation Environment Model Software, Version 1.30.001 

The base distribution of the AE9/AP9/SPM software ships with pre-compiled binaries for the Windows 
platform only.  To build the model and tools on other platforms, the source code distribution must be 
obtained from the model development team; send requests for the source code to: 
ae9ap9@vdl.afrl.af.mil .   

AE9/AP9/SPM uses a CMake-based build process.  CMake is a cross-platform make tool that supports 
most major operating systems and compilers.  It should be possible to build and run the software in any 
CMake-supported environment that also supports all required third-party library dependencies. 

Version 1.30.001 of the AE9/AP9/SPM software has been tested under Windows7 (32-bit and 64-bit) 
and Windows XP (32-bit) and under CentOS 6.x version of the Linux operating system (64-bit). The 
software has been reported to be successfully built and run on other operating systems and versions of 
these operating systems, but formally verified on only those listed here. 

Third-Party Dependencies 

The list of third-party libraries shown below specifies the respective versions that were used when 
building and testing this AE9/AP9/SPM software release.  More recent versions of these libraries may be 
available and will most likely work.  However, these versions of the libraries are preferred where 
available; some of the older versions are known to have issues.  The AE9/AP9/SPM distribution does not 
ship with these libraries - they must be downloaded and installed separately before building or running 
the model.  For Linux platforms, install the Linux distribution ‘devel’ packages for these dependencies, if 
appropriate versions are available.  Please note their installation locations, as the ‘include’ and ‘library’ 
directories will need to be referenced in the model build configuration files.  For Windows, it is 
recommended they be installed in the “C:/Program Files” location. 
 
HDF5 libraries version 1.8.8 
http://www.hdfgroup.org/HDF5/release/obtain5.html 
  (specific version at http://www.hdfgroup.org/ftp/HDF5/releases/hdf5-1.8.8/obtain5188.html  ) 

Boost template library version 1.58.0 
http://www.boost.org/users/download/ 
The Boost binary libraries are required. 

Qt libraries version 4.6.2 (release 2010.02.1) on Windows, version 4.7.2 on Linux; only required for GUI 
http://qt-project.org/downloads/ 

Qwt libraries version 5.2.1; only required for GUI 
http://sourceforge.net/projects/qwt/ 
  Please note that proper build of Qwt requires use of the above Qt installation, especially ‘qmake’. 
 
  Important: On Linux systems, an update of the ‘path’ environment variable may be necessary to ensure the 
correct version of qmake is used during the build process.  Test this via the command ‘which qmake’. 

mailto:ae9ap9@vdl.afrl.af.mil
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/ftp/HDF5/releases/hdf5-1.8.8/obtain5188.html
http://www.boost.org/users/download/
http://qt-project.org/downloads/
http://sourceforge.net/projects/qwt/


4 
 

Required Build Tools 

CMake version 2.8.4 on Windows, version 2.6.4 on Linux 
http://cmake.org/cmake/resources/software.html 

Windows:  Microsoft Visual Studio 2008 (includes C++ compiler) 
http://www.microsoft.com/en-us/download/details.aspx?id=14597  
  A Windows-based FORTRAN compiler is also needed for a full source code compilation, but 
unfortunately, is not freely available.  However, by default, the build process links to an included pre-
compiled library of these FORTRAN-based routines. 

Linux:  Gnu compiler (C++ and FORTRAN) version 4.4.4 or later 
http://gcc.gnu.org/ 
  For CentOS or RHEL version 5.X installations, this is fulfilled with the “gcc44” package; an additional 
option in the build commands is required. 

Recommended Build Tools 

Python scripting language 
http://www.python.org/ 

AE9/AP9/SPM Distribution Directory Structure 

The AE9/AP9/SPM software distribution ships as a zipfile, which unzips to this directory structure: 

Ae9Ap9 
    bin 
        win32           -  pre-built 32-bit Windows (XP/7) binaries 
        win64           -  pre-built 64-bit Windows 7 binaries 
    documents                   -  release notes, user’s guide, build instructions 
    modelData                    -  model database files 
    consoleTests                -  simple test cases for exercising the model 
    unitTests                       -  more extensive test inputs for the model 
    validation  -  automated scripts for validating the model unitTests results 
    source                    -  source code root and build script   (source code files are not present in base distribution) 
        Ae9Ap9                     -  Ae9Ap9 model source code tree 
        SpWx_Ae9Ap9  -  source tree  for space weather models upon which Ae9Ap9 depends 
        Ae9Ap9Gui  -  GUI application source tree 
        buildAe9Ap9.py -  python script for automated build on ‘linux’, ‘win32’ and ‘win64’ platforms 

Once the required third-party dependencies are successfully installed, several build configuration files 
for the model source code will need to be updated with their install locations.  The Ae9Ap9 model and 
utility executable files can then be built using the automated build script, or using the detailed set of 
commands.  When completed, the executable files (and other supporting files) are placed in the 
platform-specific subdirectory of the ‘bin’.  The model should be run from this directory. 

http://cmake.org/cmake/resources/software.html
http://www.microsoft.com/en-us/download/details.aspx?id=14597
http://gcc.gnu.org/
http://www.python.org/


5 
 

Steps to Building AE9/AP9/SPM Model Library and Applications 

Precursors, for currently supported platforms 

a) Download and install all required third-party support libraries for the desired platform using the 
standard instructions and procedures provided by the manufacturers. See the complete list of 
third-party support libraries above for download links and platform dependencies. 
 

b) Taking note of the include and library paths for the third-party dependencies installed in the 
previous step, using a plain text editor, update these in the three build script configuration files: 
 
•  Ae9Ap9/source/SpWx_Ae9Ap9/Common/internal_utils.cmake 

Scroll down in the file to where these lines are showing: 
############################################################## 
# config_include_lib_paths 

From here, all settings that may require modification are preceded with this line: 
# <<== END-USER MODIFIABLE ==>> 
 

The configuration file contains several platform-specific sections of commands that set these 
paths.   Each section is started with a line similar to: 
     if(CMAKE_BUILD_TYPE MATCHES "<platform_name>") 
Find the appropriate platform section, and modify the existing lines to match the installation 
locations for the third-party libraries.  For Windows, use forward slashes (‘/’) in path references. 
Note the ‘set’ of the EXT_LIBS_ROOT variable, and its subsequent reference $(EXT_LIBS_ROOT), for 
ease of use in multiple places.  For Windows, it is suggested to set EXT_LIBS_ROOT to “C:/Program 
Files”. 

Some Windows-specific references to FORTRAN and HDF5 library file locations are also found in 
the Ae9Ap9/source/SpWx_Ae9Ap9/Models/CMakeLists.txt file, which may need updating. 

•  Ae9Ap9/source/Ae9Ap9/internal_utils.cmake 

This file is updated in the same way as the previous file. 

•  Ae9Ap9/source/Ae9Ap9Gui/trunk/Ae9Ap9Gui.pro 

The Ae9Ap9Gui source tree utilizes ‘qmake’ (part of the Qt development environment) for the 
build process, and thus uses a slightly different file and syntax for defining the include and 
library paths.  Important: on Linux systems, verify that the correct ‘qmake’ version is being used; 
update the ‘path’ environment variable as necessary. 

The Qt include and library paths will be automatically set properly with the installation of the Qt 
software. This file must only explicitly set paths for the Qwt include and library paths, as shown 
below.  Note the platform-specific sections are also present here. 



6 
 

win32 { 
    INCLUDEPATH += c:\Qt\qwt-5.2.1\src 
    LIBS += “c:\Qt\qwt-5.2.1\lib\libqwt5.a” 
} 
win64 { 
    INCLUDEPATH += c:\Qt64\qwt-5.2.1\src 
    LIBS += “c:\Qt64\qwt-5.2.1\lib\libqwt5.a” 
} 
unix { 
    INCLUDEPATH += /nas/ExternalLibs/Qt/qwt-5.2/src 
    LIBS += /nas/ExternalLibs/Qt/qwt-5.2/lib/libqwt.so 
} 

Precursors, for currently unsupported platforms 

The current source distribution of AE9/AP9/SPM has built-in support for linux, win32 and win64 
platforms. To utilize the software on other operating systems and development environments will 
require more extensive modifications to the existing configuration files and build scripts. Use the 
following steps to modify the build for additional platforms. 

a) Verify that all third party dependencies are available and supported on the target operating 
system and development environment. This can be done by consulting the manufacturers’ 
websites or customer support contacts. 

b) The configuration files (described in the ‘supported platform’ section) will require new platform-
specific sections to be added and updated, instead of editing existing settings. In the two 
‘internal_utils.cmake’ files, the platform-specific settings are placed within sections that are 
delimited by the lines: 
     if(CMAKE_BUILD_TYPE MATCHES "<platform_name>") 
       ... 
     endif (CMAKE_BUILD_TYPE MATCHES "<platform_name>") 
Copy one of the existing sections, and insert it below, then change the platform name (in both 
places), and edit the lines within this new section as previously described. 
 
Similarly, in the ‘Ae9Ap9Gui.pro’ file, copy an existing platform-specific section, then change the 
platform name and paths for the new platform. 

c) Finally, within the Ae9Ap9 and SpWx_Ae9Ap9 source trees, a number of CMake scripts perform 
platform-specific tasks. It may be necessary to examine each of these to determine if such 
operations are required for this new platform. These platform-specific operation sections are 
delimited in the same manner as in the ‘internal_utils.cmake’ files. 

 



7 
 

Automated Build 

The preferred method of building a source distribution of AE9/AP9/SPM on a supported platform is to 
utilize the python script called buildAe9Ap9.py, located in the Ae9Ap9/source directory of the 
distribution. This script will build the model library and the command-line and gui driver applications, 
then place them in a platform-specific subdirectory under Ae9Ap9/bin in the distribution. During the 
build process, the script will generate a log file called buildAe9Ap9.log in the Ae9Ap9/source directory; 
this can be used to identify any build errors encountered. The python build script should be invoked 
from a command prompt in the Ae9Ap9/source distribution directory, passing both the operating 
system name (as matching the CMAKE_BUILD_TYPE choices) and mode (debug or release), as follows: 
    python buildAe9Ap9.py  --os=<platform_name>  --mode=<type> 
where  <platform_name>  can be  linux , win32 or win64, and <type> can be release  or  debug . 
For RedHat EL or CentOS 5.x installations only, the –-gcc=gcc44 option should also be included.  
Warning: ‘debug’ mode slows program execution by approximately a factor of 10. 
 
Manual Build 

Because python is not required for AE9/AP9/SPM and is not automatically installed on all operating 
systems, the following instructions are provided for building the AE9/AP9/SPM model and applications 
manually.  The steps shown below are used to build Linux or Windows release-mode binaries.  
Substitute ‘linux’ with ‘win32’ or ‘win64’ in these commands as needed.   Additional options that are 
needed for building debug-mode binaries are shown where required. For ‘win64’ builds only, the first 
two cmake commands also require the option: ‘ –G”Visual Studio 9 2008 Win64” ’ (including quotes). 

1. From a command prompt, navigate to the Ae9Ap9/source directory. 

2. Create a directory (mkdir), appropriately named ‘SpWx_Ae9Ap9_linux_release’ or 
‘SpWx_Ae9Ap9_winXX_release’, then navigate to that directory. 

3. Enter the command: 
 cmake –DCMAKE_BUILD_TYPE=linux –DBUILD_AE9AP9_SPWX=ON ../SpWx_Ae9Ap9 (win32 or win64) 

For RedHat EL or CentOS 5.x Linux installations, also include the -DUSE_GCC44=ON parameter. 
For debug mode, also include the -DCMAKE_DEBUG=Y parameter [debug mode slows execution ~x10]. 

4. Assuming the previous run of cmake produced no errors, it will have generated platform-specific 
make scripts in the newly created directory. On Linux, these will be in the form of makefile(s). 
On Windows, these will take the form of Visual Studio solution and project files.  To perform the 
final step of the build process for this portion of the source tree, do one of the following: 
  
Linux:  Enter the command:  make 
 

Windows:  From Windows Explorer, double-click the solution file SpWx.sln in the 
Ae9Ap9/source/ SpWx_Ae9Ap9_winXX_release directory. From within Visual Studio, select the 
project “ALL_BUILD” in the project explorer pane. Verify that the build type is shown as ‘Release’ 
mode in the toolbar along the top.  Select “Build ALL_BUILD” from the Build menu.  Close Visual 
Studio when the build is complete. 



8 
 

 

This completes the build process for the SpWx_Ae9Ap9 portion of the source tree. 

5. At the command prompt, navigate back to the Ae9Ap9/source directory 

6. Create a directory ‘Ae9Ap9_linux_release’ below it and then navigate to that directory. 

7. Enter the command: 
 cmake –DCMAKE_BUILD_TYPE=linux –DSPWX_BUILD=../SpWx_Ae9Ap9_linux_release ../Ae9Ap9 

For RedHat EL or CentOS 5.x Linux installations, also include the -DUSE_GCC44=ON parameter. 
For debug mode, also include the -DCMAKE_DEBUG=Y parameter [debug mode slows execution ~x10]. 

8. Once again, this is a two-step build process with the next step being platform-specific. 
 

Linux:  Enter the command: make 
 

Windows:  From Windows Explorer, double-click the solution file ae9ap9.sln in 
Ae9Ap9/source/Ae9Ap9_winxx_release. From Visual Studio, select project “ALL_BUILD”. Verify 
that the current build type is ‘Release’ mode in the toolbar along the top.  Select “Build 
ALL_BUILD” from the Build menu.  Close Visual Studio when the build is complete. 
 

Assuming all builds completed successfully, this completes the build of the Ae9Ap9 source tree. 

9. At the command prompt, navigate back to the Ae9Ap9/source directory. (Beginning to see the 
pattern here?) 

10. Create a directory ‘Ae9Ap9Gui_linux_release’ below and navigate to that directory.  (The 
precompiled ‘win32’ and ‘win64’ versions of the GUI program are 32-bit only.  The ‘win64’ 
version of the GUI program has not been tested; 64-bit QT and Qwt libraries would be required.) 

11. Enter the command: 
 cmake –DCMAKE_BUILD_TYPE=linux ../Ae9Ap9Gui 

For debug mode, also include the -DCMAKE_DEBUG=Y parameter. 

12. We once again find ourselves at the platform-specific build step. 
 

Linux:  Enter the command: make 
 

Windows:  From Windows Explorer, double-click the solution file Project.sln in 
Ae9Ap9/source/Ae9Ap9Gui_winxx_release. From Visual Studio, select project “ALL_BUILD”. 
Verify that the current build setting is ‘Release’ mode in the toolbar along the top.  Select “Build 
ALL_BUILD” from the Build menu. Close Visual Studio when the build is complete. 
 

This completes the build of all source trees.  All that remains is to copy binary executable files 
(and a GUI configuration file) to the appropriate location beneath Ae9Ap9/bin. 

13. Navigate to the Ae9Ap9/bin directory and create a ‘linux’ or ‘winXX’ subdirectory; navigate into 
that directory. 



9 
 

14. From the command prompt, perform the following platform-specific copy commands: 
 

Linux: 
cp ../../source/Ae9Ap9_linux_release/trunk/bin/CmdLineAe9Ap9 . 
cp ../../source/Ae9Ap9_linux_release/trunk/bin/IntegralPlasma . 
cp ../../source/Ae9Ap9Gui_linux_release/trunk/Ae9Ap9Gui . 
cp ../../source/Ae9Ap9Gui/trunk/Ae9Ap9GuiDBConfig.txt . 
 

Windows: 
copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\CmdLineAe9Ap9.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\IntegralPlasma.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\Ae9Ap9Dll.dll  . 

copy ..\..\source\Ae9Ap9Gui_winXX_release\trunk\release\Ae9Ap9Gui.exe . 
copy ..\..\source\Ae9Ap9Gui\trunk\Ae9Ap9GuiDBConfig.txt . 

 
Testing of the Build 

At this point, the source distribution has been built and deployed to a location where it should run 
successfully using test input files.  With the command prompt at the ‘Ae9Ap9/bin/<platform_name>” 
directory, verify the operational status of the software installation by entering this command:   
   CmdLineAe9Ap9 –i ../../consoleTests/short.txt 
 
The command-line utility should run successfully and produce output files in the Ae9Ap9/consoleTests 
directory.  

Similarly, the GUI application can also be invoked from this location with the command: 
   Ae9Ap9Gui 
or, double-clicking its icon in the file manager window.  Refer to the User’s Guide for instructions and 
examples for using the GUI application. 

If either fails to load, it is likely that a dependency (.dll file on windows) or (.so on linux) has not been 
installed in a location on the appropriate system path.  For example, if a windows debug build were 
created and installed to Ae9Ap9/bin/winXX_debug directory, one must copy the dependent dlls from 
the pre-built windows release mode build directory Ae9A9/bin/winXX_release to that location. 

On Windows systems, problems with the GUI application have been reported.  Please verify that the GUI 
source code, the Qt and Qwt dependencies are all in the same ‘release’ or ‘debug’ mode – no mixing of 
‘release’ and ‘debug’ parts is permitted. 

To report build problems with the distribution, please include any log files generated by the process and 
all error messages displayed in the command window.  We will be unable to diagnose the source of the 
problem without this information. 

If successful in porting the software to a currently unsupported platform, please send a copy of the 
modified files to the development team (ae9ap9@vdl.afrl.af.mil ).  This information will be greatly 
appreciated, and will be incorporated into future releases. 

mailto:ae9ap9@vdl.afrl.af.mil

