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Build Instructions for IRENE (AE9/AP9/SPM) Radiation Environment Model Software, Version 1.50.001 

The base distribution of the IRENE model package ships with pre-compiled single- and multi-threaded 

application binaries for the Windows platform only.  To build the model and tools on other platforms, 

the source code distribution must be obtained from the model development team; send requests for the 

source code to: ae9ap9@vdl.afrl.af.mil .   

IRENE (AE9/AP9/SPM) uses a CMake-based build process.  CMake is a cross-platform make tool that 

supports most major operating systems and compilers.  It should be possible to build and run the 

software in any CMake-supported environment that also supports all required third-party library 

dependencies. 

Version 1.50.001 of the AE9/AP9/SPM software has been tested under Windows7 (32-bit and 64-bit) 

and under CentOS 6.x version of the Linux operating system (64-bit). The software has been reported to 

be successfully built and run on other operating systems and versions of these operating systems, but 

formally verified on only those listed here. 

Third-Party Dependencies 

The list of third-party libraries shown below specifies the respective versions that were used when 

building and testing this IRENE (AE9/AP9/SPM) software release.  More recent versions of these libraries 

may be available and will possibly work (but QT 4.x and Qwt 5.x are specifically required, if the GUI 

application is to be built).  However, these versions of the libraries are preferred where available; some 

of the older versions are known to have issues.  The IRENE package distribution does not ship with these 

libraries - they must be downloaded and installed separately before building or running the model.  For 

Linux platforms, install the Linux distribution ‘devel’ packages for these dependencies, if appropriate 

versions are available.  Please note their installation locations, as the ‘include’ and ‘library’ directories 

will need to be referenced in the model build configuration files.  See Appendix A for tips installing on 

Linux distributions other than CentOS.  For Windows, it is recommended they be installed in the 

“C:/Program Files” location. 

 

HDF5 libraries version 1.8.8 

http://www.hdfgroup.org/HDF5/release/obtain5.html 

Boost template library version 1.58.0 

http://www.boost.org/users/download/ 

The build of the Boost binary libraries is NOT required – only the header files are used. 

Installation of the MPI libraries is optional; they are only required for the building of the multi-threaded 

version of the software. 

Linux: OpenMPI library version 1.8.1 

https://www.open-mpi.org/software/ompi/v1.8/ 

Windows:  the Intel MPI Library 2017, Update 3 Runtime Environment files are included in the model 

mailto:ae9ap9@vdl.afrl.af.mil
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.boost.org/users/download/
https://www.open-mpi.org/software/ompi/v1.8/
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distribution, but the commercial development product is required for the building of the multi-threaded 

version.  A free, 30-day trial version is available at https://software.intel.com/en-us/intel-mpi-library . 

Installation of the Qt and Qwt libraries is optional; they are only required for the building of the GUI 

application. 

Qt libraries version 4.6.2 (release 2010.02.1) on Windows, version 4.7.2 on Linux  

http://qt-project.org/downloads/ 

Qwt libraries version 5.2.1  

http://sourceforge.net/projects/qwt/ 

  Please note that proper build of Qwt requires use of the above Qt installation, especially ‘qmake’. 

  

Important: On Linux systems, an update of the ‘path’ environment variable may be necessary to ensure the correct 

version of qmake is used during the build process.  Test this via the command ‘which qmake’. 

Required Build Tools 

CMake version 2.6 or later 

http://cmake.org/cmake/resources/software.html 

Windows:  Microsoft Visual Studio 2008 or 2012 (includes C++ compiler) 

https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx  

  A Windows-based FORTRAN compiler is also needed for a full source code compilation, but 

unfortunately, is not freely available.  However, by default, the build process links to an included pre-

compiled library of these FORTRAN-based routines. 

Linux:  Gnu compiler (C++ and FORTRAN) version 4.4.4 or later (problems using version 6.x have been reported) 

http://gcc.gnu.org/ 

  For CentOS or RHEL version 5.X installations, this is fulfilled with the “gcc44” package; an additional 

option in the build commands is required. 

Recommended Build Tools 

Python scripting language 

http://www.python.org/ 

IRENE (AE9/AP9/SPM) Distribution Directory Structure 

The IRENE (AE9/AP9/SPM) software distribution ships as a zipfile, which unzips to this directory 

structure: 

Ae9Ap9 

    bin 

        win32           -  pre-built 32-bit Windows (XP/7) binaries 

        win64           -  pre-built 64-bit Windows 7 binaries 

    documents                   -  release notes, user’s guide, build instructions, license information, etc 

https://software.intel.com/en-us/intel-mpi-library
http://qt-project.org/downloads/
http://sourceforge.net/projects/qwt/
http://cmake.org/cmake/resources/software.html
https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx
http://gcc.gnu.org/
http://www.python.org/
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    modelData                    -  model database files 

    samples  - sample model run input files 

    unitTests                -  collection of extended test cases that exercise the capabilities of  the model 

    source                    -  source code root and build script   (source code files are not present in base distribution) 

        Ae9Ap9Mpi  -  Ae9Ap9 model source code tree 

        SpWx_Ae9Ap9  -  source tree for space weather models upon which Ae9Ap9 depends 

        Ae9Ap9GuiMpi -  GUI application source tree 

        buildAe9Ap9.py -  python script for automated build on ‘linux’, ‘win32’ and ‘win64’ platforms 

Once the required third-party dependencies are successfully installed, several build configuration files 

for the model source code will need to be updated with their install locations.  The Ae9Ap9 model and 

utility executable files can then be built using the automated build script, or using the detailed set of 

commands.  When completed, the executable files (and other supporting files) are placed in the 

platform-specific subdirectory of the ‘bin’.  The model should be run from this directory. 
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Steps to Building IRENE (AE9/AP9/SPM) Model Library and Applications 

Precursors, for currently supported platforms 

a) Download and install all required third-party support libraries for the desired platform using the 

standard instructions and procedures provided by the manufacturers. See the complete list of 

third-party support libraries above for download links and platform dependencies. 

 

b) Taking note of the include and library paths for the third-party dependencies installed in the 

previous step, using a plain text editor, update these in the three build script configuration files: 

 

•  Ae9Ap9/source/SpWx_Ae9Ap9/Common/internal_utils.cmake 

Scroll down in the file to where these lines are showing: 
############################################################## 

# config_include_lib_paths 

From here, all settings that may require modification are preceded with this line: 
# <<== END-USER MODIFIABLE ==>> 

 

The configuration file contains several platform-specific sections of commands that set these 

paths.   Each section is started with a line similar to: 
     if(CMAKE_BUILD_TYPE MATCHES "<platform_name>") 

Find the appropriate platform section, and modify the existing lines to match the installation 

locations for the third-party libraries.  For Windows, use forward slashes (‘/’) in path references. 

Note the ‘set’ of the EXT_LIBS_ROOT variable, and its subsequent reference $(EXT_LIBS_ROOT), for 

ease of use in multiple places.  For Windows, it is suggested to set EXT_LIBS_ROOT to “C:/Program 

Files”. 

Some Windows-specific references to FORTRAN and HDF5 library file locations are also found in 

the Ae9Ap9/source/SpWx_Ae9Ap9/Models/CMakeLists.txt file, which may need updating. 

•  Ae9Ap9/source/Ae9Ap9Mpi/internal_utils.cmake 

This file is updated in the same way as the previous file, if the GUI application is desired. 

•  Ae9Ap9/source/Ae9Ap9GuiMpi/trunk/Ae9Ap9Gui.pro 

The Ae9Ap9Gui source tree utilizes ‘qmake’ (part of the Qt development environment) for the 

build process, and thus uses a slightly different file and syntax for defining the include and 

library paths.  Important: on Linux systems, verify that the correct ‘qmake’ version is being used; 

update the ‘path’ environment variable as necessary. 

The Qt include and library paths will be automatically set properly with the installation of the Qt 

software. This file must only explicitly set paths for the Qwt include and library paths, as shown 

below.  Note the platform-specific sections are also present here. 
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win32 { 

    INCLUDEPATH += c:\Qt\qwt-5.2.1\src 

    LIBS += “c:\Qt\qwt-5.2.1\lib\libqwt5.a” 

} 

win64 { 

    INCLUDEPATH += c:\Qt64\qwt-5.2.1\src 

    LIBS += “c:\Qt64\qwt-5.2.1\lib\libqwt5.a” 

} 

unix { 

    INCLUDEPATH += /nas/ExternalLibs/Qt/qwt-5.2/src 

    LIBS += /nas/ExternalLibs/Qt/qwt-5.2/lib/libqwt.so 

} 

Precursors, for currently unsupported platforms 

The current source distribution of IRENE model pacakage has built-in support for linux, win32 and win64 

platforms. To utilize the software on other operating systems and development environments will 

require more extensive modifications to the existing configuration files and build scripts. Use the 

following steps to modify the build for additional platforms. 

a) Verify that all third party dependencies are available and supported on the target operating 

system and development environment. This can be done by consulting the manufacturers’ 

websites or customer support contacts. 

b) The configuration files (described in the ‘supported platform’ section) will require new platform-

specific sections to be added and updated, instead of editing existing settings. In the two 

‘internal_utils.cmake’ files, the platform-specific settings are placed within sections that are 

delimited by the lines: 
     if(CMAKE_BUILD_TYPE MATCHES "<platform_name>") 

       ... 

     endif (CMAKE_BUILD_TYPE MATCHES "<platform_name>") 

Copy one of the existing sections, and insert it below, then change the platform name (in both 

places), and edit the lines within this new section as previously described. 

 

Similarly, in the ‘Ae9Ap9Gui.pro’ file, copy an existing platform-specific section, then change the 

platform name and paths for the new platform. 

c) Finally, within the Ae9Ap9 and SpWx_Ae9Ap9 source trees, a number of CMake scripts perform 

platform-specific tasks. It may be necessary to examine each of these to determine if such 

operations are required for this new platform. These platform-specific operation sections are 

delimited in the same manner as in the ‘internal_utils.cmake’ files. 
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Automated Build 

The preferred method of building a source distribution of IRENE (AE9/AP9/SPM) on a supported 

platform is to utilize the python script called buildAe9Ap9.py, located in the Ae9Ap9/source directory of 

the distribution. This script will build the model library and the command-line and gui driver 

applications, then place them in a platform-specific subdirectory under Ae9Ap9/bin in the distribution. 

During the build process, the script will generate a log file called buildAe9Ap9.log in the Ae9Ap9/source 

directory; this can be used to identify any build errors encountered. At a command prompt in the 

‘Ae9Ap9/source’ directory, invoke the python build script, specifying the operating system name and, if 

needed, the mode (defaults to ‘release’): 
  python buildAe9Ap9.py --os=<platform_name> [ --mode=<type> ] [ --nompi ] [ --nogui ] 

where  <platform_name>  can be  linux , win32 or win64, and <type> can be release  or  debug . 

By default, both the single- and multi-threaded versions of the programs are built, unless the optional 

argument ‘--nompi’ (required for win32 builds) is specified.  The GUI application is also built by default; 

to skip this, specify the optional argument ‘--nogui’.  For RedHat EL or CentOS 5.x installations only, the 

--gcc=gcc44 option should also be included.   

Warning: ‘debug’ mode increases program execution time by a factor of 10 to 20. 

 

Manual Build 

Because python is not required for IRENE (AE9/AP9/SPM) and is not automatically installed on all 

operating systems, the following instructions are provided for building the model and applications 

manually.  The steps shown below are used to build Linux or Windows release-mode binaries.  

Substitute ‘linux’ with ‘win32’ or ‘win64’ in these commands as needed.   Additional options that are 

needed for building debug-mode binaries are shown where required. For ‘win64’ builds only, the first 

two cmake commands also require the option: ‘ -G”Visual Studio 9 2008 Win64” ’ (including 

quotes). 

1. From a command prompt, navigate to the Ae9Ap9/source directory. 

2. Create a directory (mkdir), appropriately named ‘SpWx_Ae9Ap9_linux_release’ or 

‘SpWx_Ae9Ap9_winXX_release’, then navigate to that directory. 

3. Enter the command: 
 cmake -DCMAKE_BUILD_TYPE=linux -DBUILD_AE9AP9_SPWX=ON ../SpWx_Ae9Ap9 

For Windows platforms, replace linux with the appropriate win32 or win64. 

For RedHat EL or CentOS 5.x Linux installations, also include the -DUSE_GCC44=ON parameter. 

For debug mode, also include the -DCMAKE_DEBUG=Y parameter [debug mode slows execution ~x10]. 

4. Assuming the previous run of cmake produced no errors, it will have generated platform-specific 

make scripts in the newly created directory. On Linux, these will be in the form of makefile(s). 

On Windows, these will take the form of Visual Studio solution and project files.  To perform the 

final step of the build process for this portion of the source tree, do one of the following: 
  

Linux:  Enter the command:  make 
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Windows:  From Windows Explorer, double-click the solution file SpWx.sln in the 

Ae9Ap9/source/ SpWx_Ae9Ap9_winXX_release directory. From within Visual Studio, select the 

project “ALL_BUILD” in the project explorer pane. Verify that the build type is shown as ‘Release’ 

mode in the toolbar along the top.  Select “Build ALL_BUILD” from the Build menu.  Close Visual 

Studio when the build is complete. 
 

This completes the build process for the SpWx_Ae9Ap9 portion of the source tree. 

5. At the command prompt, navigate back to the Ae9Ap9/source directory 

6. Create a directory ‘Ae9Ap9_linux_release’ below it and then navigate to that directory. 

7. Enter the command: 
 cmake -DCMAKE_BUILD_TYPE=linux -DSPWX_BUILD=../SpWx_Ae9Ap9_linux_release ../Ae9Ap9Mpi 

By default, both the single- and multi-threaded versions of the programs are built.  To build only 

the single-threaded version, add the optional argument ‘-DUSE_MPI=OFF’ (required for win32 

builds).  For RedHat EL or CentOS 5.x Linux installations, also include the -DUSE_GCC44=ON 

parameter.  For debug mode, also include the -DCMAKE_DEBUG=Y parameter. 

Warning: ‘debug’ mode increases program execution time by a factor of 10 to 20. 

8. Once again, this is a two-step build process with the next step being platform-specific. 
 

Linux:  Enter the command: make 
 

Windows:  From Windows Explorer, double-click the solution file ae9ap9.sln in 

Ae9Ap9/source/Ae9Ap9_winxx_release. From Visual Studio, select project “ALL_BUILD”. Verify 

that the current build type is ‘Release’ mode in the toolbar along the top.  Select “Build 

ALL_BUILD” from the Build menu.  Close Visual Studio when the build is complete. 
 

Assuming all builds completed successfully, this completes the build of the Ae9Ap9 source tree. 

9. At the command prompt, navigate back to the Ae9Ap9/source directory.  If no GUI application is 

desired, skip ahead to step 13. 

10. Create a directory ‘Ae9Ap9Gui_linux_release’ below and navigate to that directory.  (The 

precompiled ‘win32’ and ‘win64’ versions of the GUI program are 32-bit only.  The ‘win64’ 

version of the GUI program has not been tested; 64-bit QT and Qwt libraries would be required.) 

11. Enter the command: 
 cmake -DCMAKE_BUILD_TYPE=linux ../Ae9Ap9GuiMpi 

For debug mode, also include the -DCMAKE_DEBUG=Y parameter.  When building a single-

threaded model, disable the Mpi-related controls in the GUI with the parameter '-D NOMPI=On'. 

12. We once again find ourselves at the platform-specific build step. 
 

Linux:  Enter the command: make 
 

Windows:  From Windows Explorer, double-click the solution file Project.sln in 
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Ae9Ap9/source/Ae9Ap9Gui_winxx_release. From Visual Studio, select project “ALL_BUILD”. 

Verify that the current build setting is ‘Release’ mode in the toolbar along the top.  Select “Build 

ALL_BUILD” from the Build menu. Close Visual Studio when the build is complete. 
 

This completes the build of all source trees.  All that remains is to copy binary executable files to 

the appropriate location beneath Ae9Ap9/bin. 

13. Navigate to the Ae9Ap9/bin directory and create a ‘linux’ or ‘winXX’ subdirectory; navigate into 

that directory. 

14. From the command prompt, perform the following platform-specific copy commands: 

Linux: 
cp ../../source/Ae9Ap9_linux_release/trunk/bin/CmdLineAe9Ap9 . 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/EphemTask . 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/FluxTask . 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/LegFluxTask . 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/ConcatTask . 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/FlueDoseTask . 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/AggregTask . 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/ConvertTask . 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/IntegralPlasma . 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/TotalDose . 

cp ../../source/Ae9Ap9Gui_linux_release/trunk/Ae9Ap9Gui .   (only if GUI was built) 
(the following may be omitted if only the single-threaded versions were built) 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/CmdLineAe9Ap9Mpi .  

cp ../../source/Ae9Ap9_linux_release/trunk/bin/EphemTaskMpi . 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/FluxTaskMpi . 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/LegFluxTaskMpi . 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/ConcatTaskMpi . 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/FlueDoseTaskMpi . 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/AggregTaskMpi . 

cp ../../source/Ae9Ap9_linux_release/trunk/bin/ConvertTaskMpi . 

 

Windows: 
copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\CmdLineAe9Ap9.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\EphemTask.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\FluxTask.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\LegFluxTask.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\ConcatTask.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\FlueDoseTask.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\AggregTask.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\ConvertTask.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\IntegralPlasma.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\TotalDose.exe . 

copy ..\..\source\Ae9Ap9Gui_winXX_release\trunk\release\Ae9Ap9Gui.exe .  (only if GUI was built) 

(the following may be omitted if only the single-threaded versions were built or 32-bit Windows) 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\CmdLineAe9Ap9Mpi.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\EphemTaskMpi.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\FluxTaskMpi.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\LegFluxTaskMpi.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\ConcatTaskMpi.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\FlueDoseTaskMpi.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\AggregTaskMpi.exe . 

copy ..\..\source\Ae9Ap9_winXX_release\trunk\bin\Release\ConvertTaskMpi.exe . 
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Testing of the Build 

At this point, the source distribution has been built and deployed to a location where it should run 

successfully using test input files.  With the command prompt at the ‘Ae9Ap9/bin/<platform_name>’ 

directory, verify the operational status of the software installation by entering this command:   
   CmdLineAe9Ap9 -i ../../samples/Ap9ShortInput.txt 

 

The command-line utility should run successfully and produce output files in the ‘Ae9Ap9/samples’ 

directory, matching the contents of files in the ‘Ae9Ap9/samples/expectedOutput’ directory.  

Similarly, the GUI application can also be invoked from this location with the command: 
   Ae9Ap9Gui 
or, double-clicking its icon in the file manager window.  Refer to the User’s Guide for instructions and 

examples for using the GUI application. 

If either fails to load, it is likely that a dependency (.dll file on windows) or (.so on linux) has not been 

installed in a location on the appropriate system path.  For example, if a windows debug build were 

created and installed to Ae9Ap9/bin/winXX_debug directory, one must copy the dependent dlls from 

the pre-built windows release mode build directory Ae9A9/bin/winXX_release to that location. 

On Windows systems, problems with the GUI application have been reported.  Please verify that the GUI 

source code, the Qt and Qwt dependencies are all in the same ‘release’ or ‘debug’ mode – no mixing of 

‘release’ and ‘debug’ parts is permitted. 

To report build problems with the distribution, please include any log files generated by the process and 

all error messages displayed in the command window.  We will be unable to diagnose the source of the 

problem without this information. 

If successful in porting the software to a currently unsupported platform, please send a copy of the 

modified files to the development team (ae9ap9@vdl.afrl.af.mil ).  This information will be greatly 

appreciated, and will be incorporated into future releases. 

  

mailto:ae9ap9@vdl.afrl.af.mil
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Appendix A:  Non-CentOS Linux build configuration tips 

The following configuration settings and steps were used for a full compilation and installation of the 

IRENE model package software on a Linux Ubuntu 14.04 machine.  It is assumed that these settings, or 

similar, will also enable the successful installation on other package-based Linux distributions. 

 Install the development packages for HDF5, Boost, OpenMPI and QT (‘libqt4-dev’), if not already 

present.  (skip the QT install if the GUI application is not needed) 

o The header files for these packages are placed in ‘/usr/include’, and their associated 

library files are placed in ‘/usr/lib/x86_64-linux’; both are system default locations. 

 Install the CMake package, if not already present. 

----skip the next two steps if the GUI application is not needed 

 Download ‘qwt-5.2.1.zip’ from http://sourceforge.net/projects/qwt/files/qwt/5.2.1/  

o Unzip the file, cd to the new ‘qwt-5.2.1’ subdirectory 

o $ qmake 

o $ make 

o $ sudo make install 

 Edit the ‘Ae9Ap9Gui.pro’ file, in the 'unix' section, changing it to be: 

unix { 

    INCLUDEPATH += /usr/include/qt4 

    INCLUDEPATH += /usr/include/qt4/QtCore 

    INCLUDEPATH += /usr/include/qt4/QtGui 

    INCLUDEPATH += /usr/local/qwt-5.2.1/include 

    LIBS += /usr/lib/x86_64-linux-gnu/libQtGui.so 

    LIBS += /usr/lib/x86_64-linux-gnu/libQtCore.so 

    LIBS += /usr/local/qwt-5.2.1/lib/libqwt.so 

} 

 In a terminal window at the ‘Ae9Ap9/source’ directory, invoke the build script: 
o python buildAe9Ap9.py --os=linux 

   ( if the GUI application is not needed, add the argument --nogui ) 

 No modification of the two ‘internal_utils.cmake’ files is necessary, because the 

3rd-party packages that are being used have been installed in the standard 

system directories, and so do not need to be explicitly specified. 

 Many warnings regarding non-existent directories may be seen during the 

compilation process, but these do not affect the compilation success. 

 All the required executable files should now be present in the ‘Ae9Ap9/bin/linux’ directory. 

 For the execution of the GUI application, setting of an environment variable may be needed: 

o $ export LD_LIBRARY_PATH=/usr/local/qwt-5.2.1/lib/ 

o alternatively, the library files contained here may be copied to ‘/usr/lib/x86_64-linux’ 

  

http://sourceforge.net/projects/qwt/files/qwt/5.2.1/
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Contact Information 

Please send any questions, comments and/or bug reports to:   ae9ap9@vdl.afrl.af.mil 

 
The IRENE model package and related information can be obtained from AFRL's Virtual Distributed 
Laboratory (VDL) website: https://www.vdl.afrl.af.mil/programs/ae9ap9  
 

mailto:ae9ap9@vdl.afrl.af.mil
https://www.vdl.afrl.af.mil/programs/ae9ap9

