

The DSX Science Mission Initial Results

DR JAMES McCOLLOUGH / DSX PRINCIPAL INVESTIGATOR

SPACE VEHICLES DIRECTORATE / 11 DECEMBER 2019

AFRL

The DSX Science Team

AFRL

- Bob Johnston
- Yi-Jiun Su
- Michael Starks
- Patrick Roddy
- David Cooke
- Jenny Sanchez
- Jay Albert
- Alan Ling
- Steve O'Malley
- Andy Sinclair

MIT-Lincoln Laboratory

- Greg Ginet
- Rick Lambour
- Shawn Allgeier
- Jon Schoenberg
- Urban Gillespie
- Brent Parham

TNT

- Paul Song
- Ivan Galkin
- Steve Stelmash
- Bodo Reinisch
- Jiannan Tu
- Kevin Roche

ACE

Larry Davis

SET-1

- Mike Xapsos
- Yihua Zheng
- Michael Campola
- Hugh Barnaby
- Clive Dyer
- Peter McNulty
- Raoul Velazco

BBR/TASC

- Umran Inan
- Dave Lauben
- Ivan Linscott
- Bill Farrell
- Phil Scherrer

LCI

- Ted Fritz
- Chad Parker

DSX Mission Status

- Launch occurred at 12:30 AM MDT Tuesday, June 25
 - Nominal one year mission
 - 6000 x 12000 km orbit, 42° inclination, 5.3 hour period
- On orbit, concluding "Learn to Transmit" campaign
- Primary experiment: Wave Particle Interactions (WPIx)
 - Transmit and measure waves and precipitating particles to understand VLF direct injection performance and diagnose effects
- Secondary Experiment: Space Weather (SWx)
 - Measure distributions of protons and electrons to map the MEO environment and diagnose the environment for WPIx experiments
- Secondary Experiment: Space Effects (SFx)
 - Advance our understanding of on-orbit degradation and directly measure changes due to MEO radiation environment
- Mission will coordinate campaigns with VLF Propagation Mapper (VPM) mission to LEO
 - Deployment planned for mid-January from ISS

DSX undergoing final closeout before shipment

DSX separating from Falcon Heavy upper stage

Demonstration and Science Experiments (DSX) Spacecraft

Largest unmanned self-supporting structure ever flown in space

- Tuu:
- Payload Module (PM)
- Wave-particle Interactions (WPIx)
 - VLF transmitter & receivers
 - Loss cone imager
 - DC Vector Magnetometer
- Space Weather (SWx)
 - 5 particle & plasma detectors
- Space Environmental Effects (SFx)
 - NASA/Goddard Space Environment Testbed
 - AFRL effects experiment
- NASA/JPL deployable structures payload

First spacecraft design with integrated ESPA Ring

- 80 m Y-axis boom
 - VLF Tx & Rx
- 16 m Z-axis boom
 - VLF Rx
 - DC magnetic field
- ~ 500 kg
- 3-axis stabilized

- PowerThermal Control
- Communications
- Communications
 Computer/Avionics
- Experiment Computer
- Space Weather (HEPS)

DSX WPIx and SWx Payloads

Transmitter (TNT):

3 - 50 kHz at up to 5 kV (9 kV EOL), 50 - 750 kHz at 1W (local density)

particle energies

wave frequencies DC

1 eV

1 mHz

10 eV

10 mHz

100 eV

100 mHz

Loss Cone Imager (LCI):

HST: 100 - 500 keV e-FSH: 3 angular zones, 50 - 700

keV e-

±0.1 nT accuracy

Compact Environmental **Anomaly Sensor (CEASE):** 100 keV—6.5 MeV e-,

20—100 MeV

Low Energy ElectroStatic Analyzer (LEESA):

5 angular zones, 30 eV-50 keV e-. ions

High-energy Imaging Particle Spectrometer (HIPS):

8 angular zones, 1—10 MeV e-, 30-300 MeV p+

Low-energy Imaging Particle Spectrometer (LIPS):

8 angular zones, 30 keV-2 MeV e-, p+

High Energy Proton Spectrometer (HEPS) 1 look direction 20—440 MeV p⁺

Unprecedented space environment sensing capability at Medium Earth Orbit

LEESA: Low Energy ElectroStatic Analyzer SWx: Space LIPS: Low Energy Imaging Particle Spectrometer Weather HIPS: High Energy Imaging Particle Spectrometer Experiment **HEPS: High Energy Proton Spectrometer** CEASE: Compact Environment Anomaly SEnsor WPIx: Wave LCI FSH: Loss Cone Imager, Fixed Sensor Head **Particle** LCI HST: Loss Cone Imager, High Sensitivity Telescope Interactions VMAG: Vector Magnetometer Experiment WIPER: Wave-induced Precipitation of Electron Radiation SFx: Space CREDANCE: Cosmic Ray Environment Dosimetry and Charging Experiment **Environmental** DIME: Dosimetry Intercomparison and Miniaturization Experiment Effects

1 keV

1 Hz

10 keV

10 Hz

100 keV

100 Hz

1 MeV

1 kHz

10 MeV

10 kHz

100 MeV

100 kHz

1 GeV

1 MHz

electrons protons ions **EM** waves

VLF Transmissions and Earth's Plasmasphere

Plasmapause (outer edge of plasmasphere)

Inner radiation belt

Outer radiation belt

- The Plasmapause (PP) separates cold near-Earth plasma (plasmasphere) from lower density, hot plasma of the outer magnetosphere
- The plasmasphere is very dynamic and unpredictable—PP migrates inward/outward, and has longitudinal structure
- The characteristics of the transmitter are very sensitive to magnetoplasma parameters
 - Higher antenna charging outside plasmasphere
- Most DSX high power Tx experiments need to be inside PP: we use a conservative PP rule to accommodate dynamic and unpredictable nature
 - We are using a plasmapause rule of "L<3.5" for high power transmissions
 - "L>5.5 and on the dawnside" for transmissions outside the plasmasphere

DSX Experiment CONOPS

Targeted conjunction transmissions may occur at other locations but with lower driving voltages

Polar plot shows L*-MLT coverage of DSX orbit with 3 months' precession (grey)

- Blind transmissions occur at L<3.5, inside nominal plasmasphere
- "Cavity" transmissions occur at L>5.5 on the dawn side, outside nominal plasmasphere

DSX Science Campaigns

Conjunctions and Cooperation

We use conjunctions with other assets for coordinated campaigns

- Detect transmitted waves and resulting particle effects
- Diagnose the environment during transmission
- Augment global coverage of particles and waves
- Assess terrestrial VLF transmitter wave power
- Data has been cleared for release to collaborators

- Tx at the kV level at 2-50 kHz
- Up to 30 min per orbit occurring near the magnetic equator (|MLAT|<20° or L<3.5)
- Coordinating with conjunction target teams with specifics

Wave Particle Experiment Initial Results

Learn to Transmit Phase I: Resonance Discovery

- Phase 1 explores circuit capacitor configurations to assess antenna performance as a function of frequency in varying plasma conditions
 - Driven by fail-safe driving voltage ramp-up process
- Data Collection Events consist of 40-minute transmissions at a specified driving voltage
- The transmission for this schedule is a pattern that repeats every 7 seconds
 - This pattern consists of 3 sweeps from high to low frequency for ~1.3 s each, narrowing in frequency range each time around the resonant value
 - This is followed by a pulse at the resonant frequency lasting ~0.3 s
 - Finally 2.8 s of no transmission (housekeeping)

THE AIR FORCE RESEARCH LABORATORY

Phase I results

- Band of operating frequencies that TNT can use to transmit as a function of Q
 - Shaded background: plasma density (approximate)
 - Size of bubbles: driving voltage (Tx power)
- Fundamental frequency only
 - Addition of C3 will lower the lower bound
- Transmissions outside the plasmasphere:
 - Antenna capacitance determined to be ~255 pF
 - Reached 5 kV threshold at 64 V driving

UENCYONLY

NT LEARN TO TRANSMIT PHASE TO RESONANCE DISCOVERY CAMPAIGN OF FUNDAMENTAL OF REQUENCY ON

INT LEARN TO TRANSMIT PHASE I • RESONANCE DISCOVERY CAMPAIGN • FUNDAMENTAL • FREQUENCY ONL

TNT Conjunction Pattern

- Capacitances "jump around," providing a distinct signature easier to pick out in a spectrogram
- Performed transmissions against space-borne receivers, including:
 - 7 to RBSP-A
 - 12 to CASSIOPE
 - 8 to Arase

NT QuickLook v 0.1

Learn to Transmit Phase 2: TNT Boomerang Pattern

- Attempt to hear "ourselves" via waves that magnetospherically reflect after propagating away from the spacecraft
- Transmissions at frequencies likely to MR
 - 2.8, 3.0, 3.2, 3.4, 8.2 kHz
- Utilize NBR to "listen" alongside BBR for return signals
 - Began scheduling on Nov 9
 - Have had some successful TNT and BBR data collected, still being analyzed
 - Operating at 104 V
 - Looking for ~5 kV in plasmasphere, have reached 4.1 kV

BBR Survey Data

TOND JUMOJI CANALANTA

BBR Burst Data

Lightning Whistlers
Observed on Oct 25
Created by W. M. Farrell and J. Miller

Vector Magnetometer

VMAG Quicklook, DSX Orbit 646 (AN: 645-646) 13 Nov 2019 09:43:00 to 15:00:00

Space Effects (SFx) Payloads

NASA Space Environment Testbed (SET)

- Correlative Environment Monitor (QinetiQ): European dosimeter & deep-dielectric charging instrument
- **DIME** (Clemson Univ): SEE and total dose environments using miniaturized COTS parts
- ELDRS (Arizona State): Low dose-rate and proton impacts to performance of 24 transistors
- COTS-2 (CNES and NASA): Virtex2 SRAM single event upset sensitivity

AFRL "COTS" Sensors

- Objective: directly measure changes due to MEO radiation environment
 - Thermal absorption and emission—heat gain/loss of thermal control paints
 - Optical transmission—erosion of quartz windows, re-deposition of material on adjacent optics
- Results applicable to thin-film photovoltaics

SET on DSX

SET advances our understanding of on-orbit degradation

Radiometer

Photometer

Provider: AFRL/RQ

Space Effects Data

SET Data

- Initial look at base current inflight data from a gated bipolar junction transistor with thick oxide on board the ELDRS suite
- The plot shows data 41 days and 60 days after launch
- The increase in base current will be analyzed to better understand the total ionizing dose degradation of bipolar devices in space to help improve ground test protocol for such devices

Radiometer/Photometer Data

- Data from shortly after launch (left) and data during eclipse season (right)
- Radiometers show increased temperature readings after being on orbit for about 3 months
- Photometer A shows similar increase

Questions?

Space Weather Experiment Poster SM41E-3288