

The DSX Science Mission Initial Results

DR JAMES MCCOLLOUGH / DSX PRINCIPAL INVESTIGATOR

SPACE VEHICLES DIRECTORATE / 11 DECEMBER 2019

DISTRIBUTION A: Approved for Public Release (AFMC-2019-0767).

The DSX Science Team

AFRL

- Bob Johnston
- Yi-Jiun Su
- Michael Starks
- Patrick Roddy
- David Cooke
- Jenny Sanchez
- Jay Albert
- Alan Ling
- Steve O'Malley
- Andy Sinclair

MIT-Lincoln Laboratory

- Greg Ginet
- Rick Lambour
- Shawn Allgeier
- Jon Schoenberg
- Urban Gillespie
- Brent Parham

TNT

- Paul Song
- Ivan Galkin
- Steve Stelmash
- Bodo Reinisch
- Jiannan Tu
- Kevin Roche

ACE

• Larry Davis

SET-1

- Mike Xapsos
- Yihua Zheng
- Michael Campola
- Hugh Barnaby
- Clive Dyer
- Peter McNulty
- Raoul Velazco

BBR/TASC

- Umran Inan
- Dave Lauben
- Ivan Linscott
- Bill Farrell
- Phil Scherrer

LCI

- Ted Fritz
- Chad Parker

DSX Mission Status

- Launch occurred at 12:30 AM MDT Tuesday, June 25
 - Nominal one year mission
 - 6000 x 12000 km orbit, 42° inclination, 5.3 hour period
- On orbit, concluding "Learn to Transmit" campaign
- Primary experiment: Wave Particle Interactions (WPIx)
 - Transmit and measure waves and precipitating particles to understand VLF direct injection performance and diagnose effects
- Secondary Experiment: Space Weather (SWx)
 - Measure distributions of protons and electrons to map the MEO environment and diagnose the environment for WPIx experiments
- Secondary Experiment: Space Effects (SFx)
 - Advance our understanding of on-orbit degradation and directly measure changes due to MEO radiation environment
- Mission will coordinate campaigns with VLF Propagation Mapper (VPM) mission to LEO
 - Deployment planned for mid-January from ISS

DSX undergoing final closeout before shipment

DSX separating from Falcon Heavy upper stage

Demonstration and Science Experiments (DSX) Spacecraft

VLF Transmissions and Earth's Plasmasphere

AFRL

Plasmapause (outer edge of plasmasphere)

- The Plasmapause (PP) separates cold near-Earth plasma (plasmasphere) from lower density, hot plasma of the outer magnetosphere
- The plasmasphere is very dynamic and unpredictable—PP migrates inward/outward, and has longitudinal structure
- The characteristics of the transmitter are very sensitive to magnetoplasma parameters
 - Higher antenna charging outside plasmasphere
- Most DSX high power Tx experiments need to be inside PP: we use a conservative PP rule to accommodate dynamic and unpredictable nature
 - We are using a plasmapause rule of "L<3.5" for high power transmissions
 - "L>5.5 and on the dawnside" for transmissions outside the plasmasphere

DSX Experiment CONOPS

 Polar plot shows L*-MLT coverage of DSX orbit with 3 months' precession (grey)

- Blind transmissions occur
 at L<3.5, inside nominal plasmasphere
- "Cavity" transmissions occur at L>5.5 on the dawn side, outside nominal plasmasphere

DSX Science Campaigns

Month	-2 Jun	-1 Jul	0 Aug	1 Sep	2 Oct	3 Nov	4 Dec	5 Jan	6 Feb	7 Mar	8 Apr	9 May	10 Jun	11 Jul	12 Aug
L&EO															
LTT															
WSMR															
Lightning															
Van Allen P	robes														
Arase															
VPM															
BARREL															
Adaptive Controls															
EOM															

Conjunctions and Cooperation

We use conjunctions with other assets for coordinated campaigns

- Detect transmitted waves and resulting particle effects
- Diagnose the environment during transmission
- Augment global coverage of particles and waves
- Assess terrestrial VLF transmitter wave power
- Data has been cleared for release to collaborators

Wave Particle Experiment Initial Results

Learn to Transmit Phase I: Resonance Discovery

- Phase 1 explores circuit capacitor configurations to assess antenna performance as a function of frequency in varying plasma conditions
 - Driven by fail-safe driving voltage ramp-up process
- Data Collection Events consist of 40-minute transmissions at a specified driving voltage
- The transmission for this schedule is a pattern that repeats every 7 seconds
 - This pattern consists of 3 sweeps from high to low frequency for ~1.3 s each, narrowing in frequency range each time around the resonant value
 - This is followed by a pulse at the resonant frequency lasting ~0.3 s
 - Finally 2.8 s of no transmission (housekeeping)

Phase I results

- Band of operating frequencies that TNT can use to transmit as a function of Q
 - Shaded background: plasma density (approximate)
 - Size of bubbles: driving voltage (Tx power)
- Fundamental frequency only
 - Addition of C3 will lower the lower bound
- Transmissions outside the plasmasphere:
 - Antenna capacitance determined to be ~255 pF
 - Reached 5 kV threshold at 64 V driving

TNT Conjunction Pattern

- Capacitances "jump around," providing a distinct signature easier to pick out in a spectrogram
- Performed transmissions against space-borne receivers, including:
 - 7 to RBSP-A
 - 12 to CASSIOPE
 - 8 to Arase

Learn to Transmit Phase 2: TNT Boomerang Pattern

- Attempt to hear "ourselves" via waves that magnetospherically reflect after propagating away from the spacecraft
- Transmissions at frequencies likely to MR
 - 2.8, 3.0, 3.2, 3.4, 8.2 kHz
- Utilize NBR to "listen" alongside BBR for return signals
 - Began scheduling on Nov 9
 - Have had some successful TNT and BBR data collected, still being analyzed
 - Operating at 104 V
 - Looking for ~5 kV in plasmasphere, have reached 4.1 kV

DSX_19289090006_19289142405_MBA_01_L1.h5, t0 = 2019-Oct-16 09:00:06, mbaQuicklook(v1.1a) run 191024 p 01/01

BBR Burst Data

Vector Magnetometer

Space Effects (SFx) Payloads

- Correlative Environment Monitor (QinetiQ): European dosimeter & deep-dielectric charging instrument
- **DIME** (Clemson Univ): SEE and total dose environments using miniaturized COTS parts
- **ELDRS** (Arizona State): Low dose-rate and proton impacts to performance of 24 transistors
- COTS-2 (CNES and NASA): Virtex2 SRAM single event upset sensitivity

AFRL "COTS" Sensors

- Objective: directly measure changes due to MEO radiation environment
 - Thermal absorption and emission—heat gain/loss of thermal control paints
 - Optical transmission—erosion of quartz windows, re-deposition of material on adjacent optics
- Results applicable to thin-film photovoltaics

SET on DSX

understanding of on-orbit degradation

Photometer

Space Effects Data

SET Data

- Initial look at base current inflight data from a gated bipolar junction transistor with thick oxide on board the ELDRS suite
- The plot shows data 41 days and 60 days after launch
- The increase in base current will be analyzed to better understand the total ionizing dose degradation of bipolar devices in space to help improve ground test protocol for such devices

Radiometer/Photometer Data

- Data from shortly after launch (left) and data during eclipse season (right)
- Radiometers show increased temperature readings after being on orbit for about 3 months
- Photometer A shows similar increase

Questions?

Space Weather Experiment Poster SM41E-3288

THE AIR FORCE RESEARCH LABORATORY