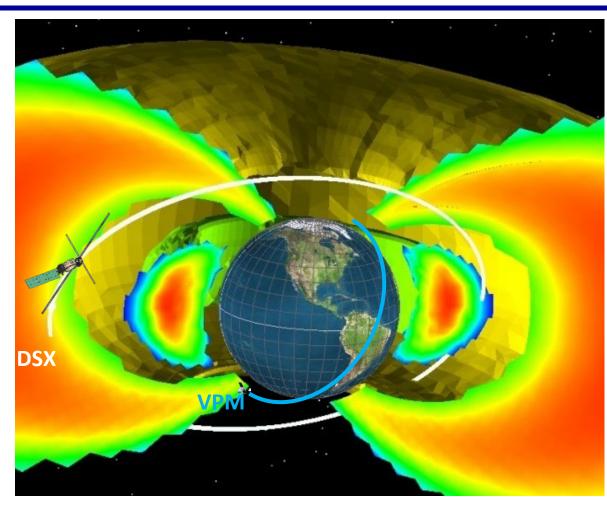


Active Experiments with the DSX Mission: Science Campaigns and Collaborations

11 December 2017

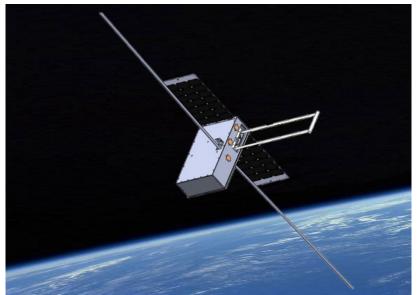
100 YEARS OF U.S. AIR FORCE SCIENCE & TECHNOLOGY


Integrity ***** Service ***** Excellence

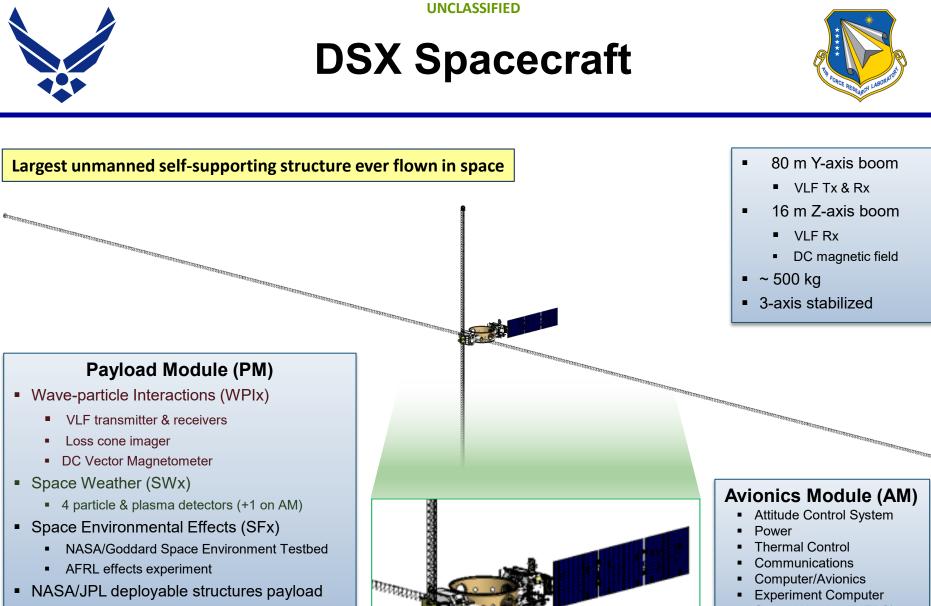
James McCollough DSX Principal Investigator Space Vehicles Directorate Air Force Research Laboratory

DSX Overview

- Planned launch in 2018, nominal one year mission
- 6000 x 12000 km orbit, 42° inclination, 5.3 hour period
- Primary experiment: Wave Particle Interactions—high power VLF transmissions in slot region
- Secondary Experiment: Space
 Weather—characterize slot region environment
- Secondary Experiment: Space Effects—Understand impacts to components
- Will coincide with VLF and Particle Mapper (VPM) nanosat mission to LEO


DSX Mission Status

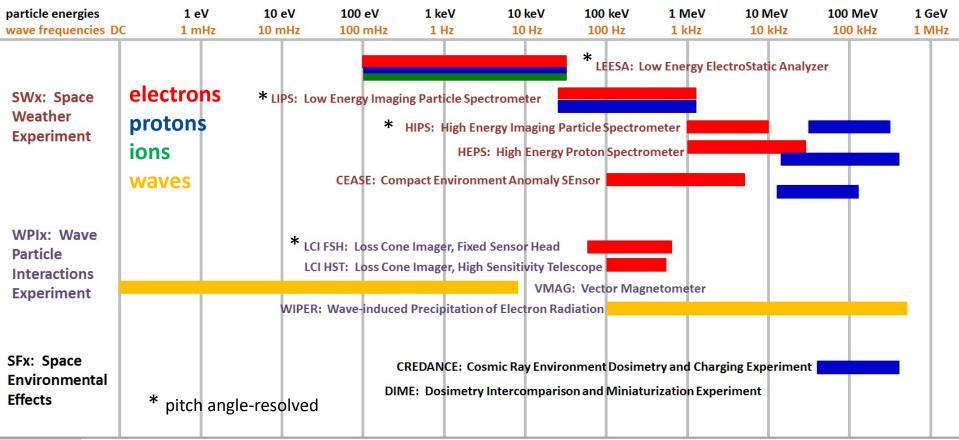
- The DSX Mission (2018 aboard SpaceX Falcon Heavy)
 - Active study of wave-particle interactions with in-situ high power VLF transmitter
 - Comprehensive study of MEO space environment
- The VPM Mission (2018 launch into LEO)
 - Launch and duration to coincide with DSX
 - First comprehensive far-field measurements of in situ transmitter



DSX environmental testing at in-house facility

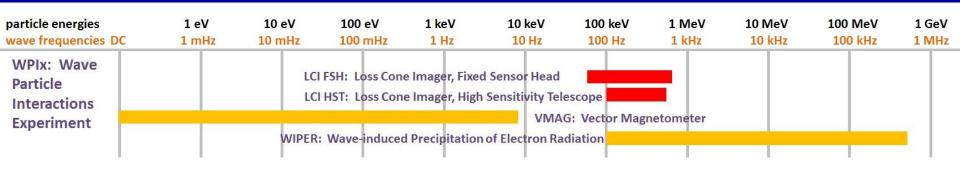
VPM in deployed configuration (rendering)

Space Weather (HEPS)



Distribution A: Approved for public release; distribution unlimited. OPS-17-15041

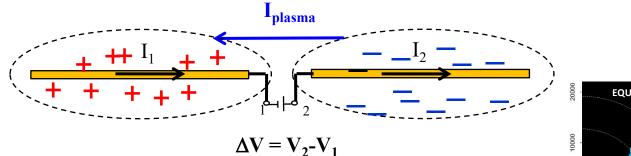
DSX Science Payloads



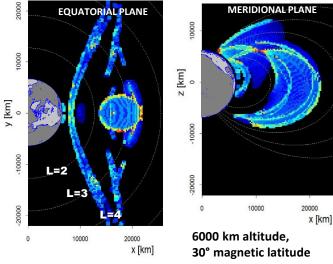
- WPIx will transmit and measure waves and precipitating particles to understand VLF direct injection performance and diagnose effects
- SWx will measure distributions of protons and electrons to map the MEO environment and diagnose the environment for WPIx experiments
- SFx will advance our understanding of on-orbit degradation and directly measure changes due to MEO radiation environment

WPIx Science Payloads

- Transmitter (TNT): UMass Lowell, SWRI, Lockheed-Martin
 - 3 50 kHz at up to 5 kV (9 kV at end of life)
 - 50 750 kHz at 1W (local electron density)
- Receiver (BBR/SRx): Stanford, Lockheed-Martin, NASA/Goddard
 - 3 B components (TASC), 2 E components (dipole antennas)
 - Frequency range: 100 Hz 50 kHz
- Vector Magnetometer (VMAG): UCLA, UMich
 - 0 8 Hz three-axis measurement, ±0.1 nT accuracy
- Loss Cone Imager (LCI): Boston University, AFRL
 - High Sensitivity Telescope (HST): FOV 6.5° (centered on LC); 100 500 keV e⁻
 - Fixed Sensor Heads (FSH): 3 angular zones, 180°x10°; 50 700 keV e⁻



Wave-Particle Interactions


Near Field: The basic physics of an antenna in a magnetoplasma are not well understood. **How much power is radiated beyond the sheath?**

- Plasma sheaths and plasma heating effects
- Employ Nascap to determine bounds

Far Field: 3D ray tracing

 Starting with a uniform spherical distribution leads to complex wave power distribution

NML

US Navy

NLK

US Navv

NPM

US Navy

Conjunctions and Cooperation

We will utilize conjunctions with other assets for coordinated campaigns

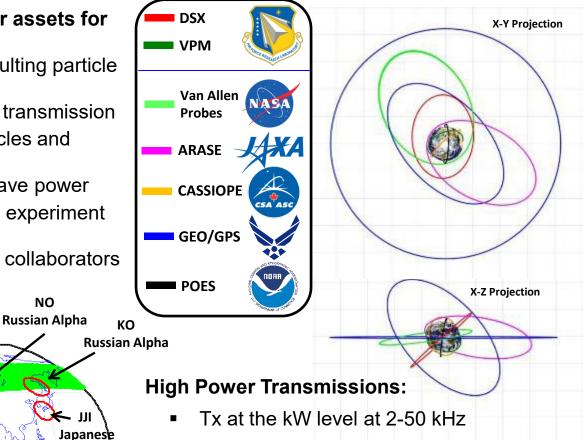
- Detect transmitted waves and resulting particle effects
- Diagnose the environment during transmission
- Augment global coverage of particles and waves
- Assess ground VLF transmitter wave power
- Measure WSMR horizontal dipole experiment power
- Data will be cleared for release to collaborators

DSX Magnetic Footprints

HWU

French Navy

KR


Russian Alpha

NWC

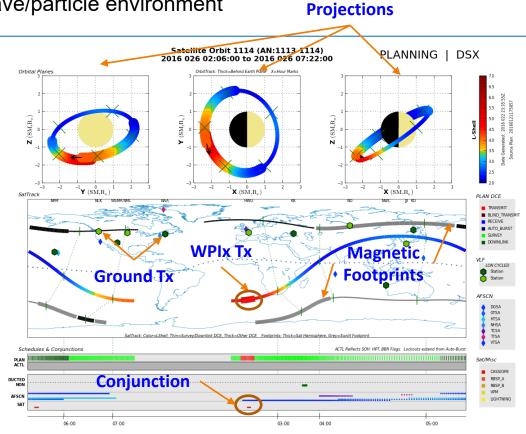
US Navy

NAA

US Navy

 Up to 30 min per orbit occurring near the magnetic equator (|MLAT|<20° or L<3.5)

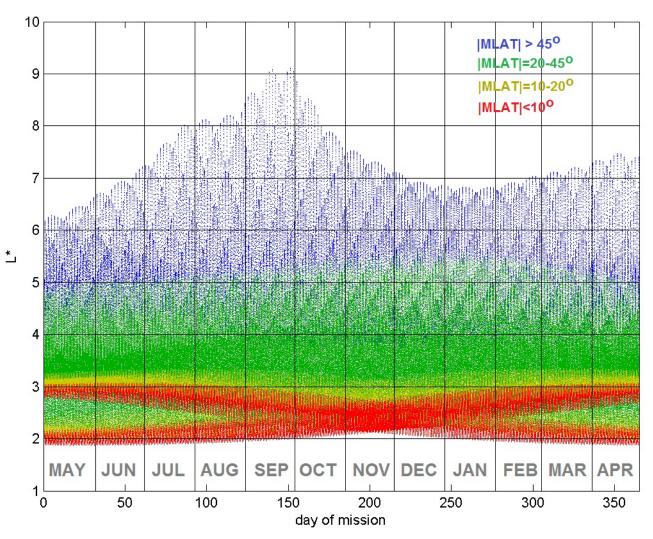
 Will coordinate with conjunction target teams with specifics



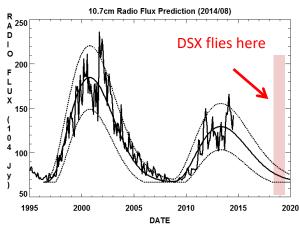
Navy

Mission Planning

- Active Experiment: Weekly science planning cadence incorporating latebreaking opportunities
 - Primary mission is study of VLF transmission, propagation, and interaction with trapped particles
 Orbit
 - Additionally examine the natural wave/particle environment
- WPIx transmissions: Tx conjunctions and "blind" near equator
- Campaigns dedicated to magnetospheric waves, lightning, and ground transmitters
- Science planning cycle works one week at a time, two weeks in advance


Distribution A: Approved for public release; distribution unlimited. OPS-17-15041

9



DSX spatiotemporal coverage

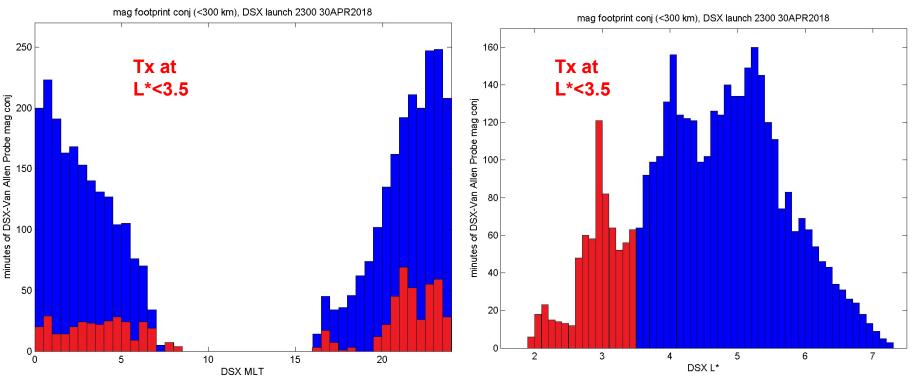
- Initial orbit crosses equatorial plane near perigee and apogee
- Orbit precession period just over one year

DSX notional science campaigns (illustrative—orientation of DSX orbit will not be known until launch)

Month	1 May	2 Jun	3 Jul	4 Aug	5 Sep	6 Oct	7 Nov	8 Dec	9 Jan	10 Feb	11 Mar	12 Apr
L&EO												
LTT												
WSMR		timing dictated by										
Lightning		seasons, mag footprint locations										
Van Allen Probes						timing	dictated l	by				
Arase							ne of laun					
VPM								timing dictated by VPM launch/lifetime				
Adaptive Controls												
EOM			Distribution	A: Approved	for public rel	ease; distribu	ition unlimited	. OPS-17-150	41			

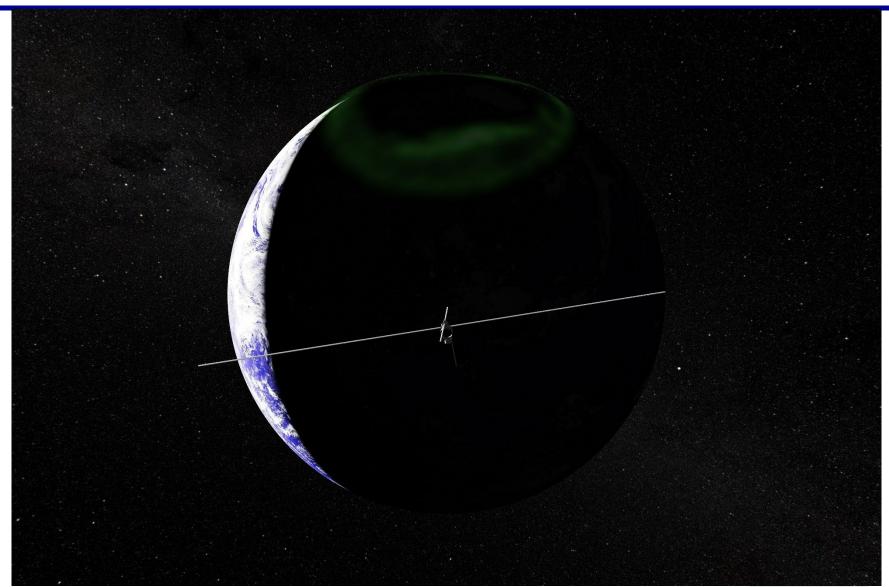
Collaborations

- Coordinating missions should expect two week advance notice on planned transmissions
 - Subject to change at the last minute
 - Input on planning can be submitted to DSX science team
- Data sharing
 - SWx (particle) data, VMAG, LCI, BBR and TNT wave data, and DSX orbit/ephemeris are already approved for release to collaborators
 - We expect to "push" data to collaborators (one way or another)
- Rules of the road in development
 - Any results for publication/presentation will need to go through AFRL clearance



DSX-Van Allen Tx Conjunctions

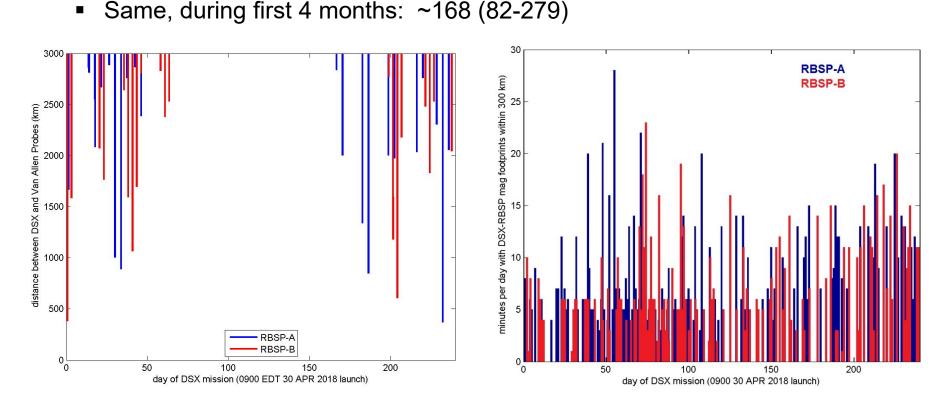
- L* and MLT distribution of magnetic footprint conjunctions, sample launch time for DSX, one year mission
- All magnetic conjunctions in blue, those potentially during high power transmissions in red


(illustrative—orientation of DSX orbit will not be known until launch)

Thank you!

Distribution A: Approved for public release; distribution unlimited. OPS-17-15041

Backups

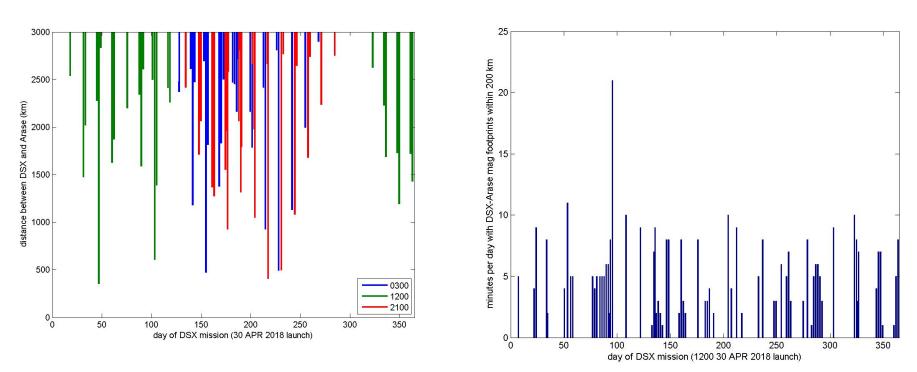


Distribution A: Approved for public release; distribution unlimited. OPS-17-15041

DSX-Van Allen Conjunctions

- Geographic conjunctions: ~15 within 2000 km through Dec 2018 (11-20)
- Magnetic conjunctions: ~307 for A+B with footprints within 300 km, through Dec 2018 (201-381)

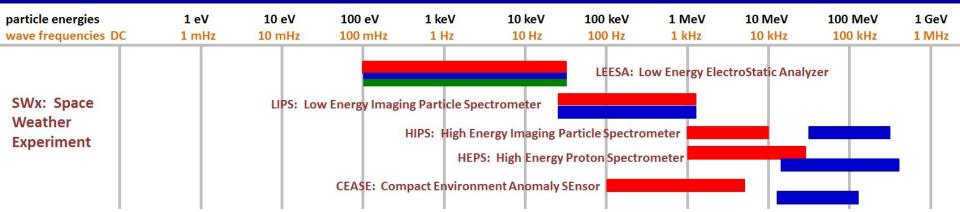
(illustrative—orientation of DSX orbit will not be known until launch)



DSX-Arase Conjunctions

UNCLASSIFIED

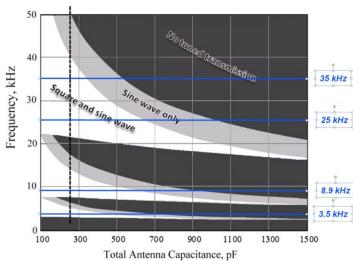
- The Receiped Laboration
- Geographic conjunctions: ~7 within 1500 km during mission (2-21)
- Magnetic conjunctions: ~116 with footprints within 200 km (60-190)
 - Same, but with L*<3.5 (high power Tx): ~33 (25-44)



(illustrative—orientation of DSX orbit will not be known until launch)

SWx Science Payloads

- Low Energy ElectroStatic Analyzer (LEESA): AFRL/RVB
 - 5 angular zones, total FOV 120°x12°; 30 eV—50 keV e⁻, ions
- Compact Environmental Anomaly Sensor (CEASE): AFRL/RVB
 - Telescope: FOV 60°; dosimeters: FOV 90°; 100 keV—6.5 MeV e⁻; 20—100 MeV p⁺
- Low-energy Imaging Particle Spectrometer (LIPS): PSI, AFRL
 - 8 angular zones, FOV 79°x8°; 30 keV—2 MeV e⁻, p⁺
- High-energy Imaging Particle Spectrometer (HIPS): PSI, AFRL
 - 8 angular zones, FOV 90°x12.5°; 1—10 MeV e⁻, 30—300 MeV p⁺
- High Energy Proton Spectrometer (HEPS): ATC, Amptek, AFRL
 - 1 look direction, FOV 24° (p⁺) 40° (e⁻); 20—440 MeV p⁺



TNT—Transmitter, Narrowband Rx, and Tuners

- Comprised of 80 m dipole antenna, cabling, and control and tuning units for VLF transmitter and narrowband VLF receiver
- Transmits 3-50 kHz tuned signals
 - Up to ~5 kV during high-power transmissions
 - Low-power "sounding" operations at 50-750 kHz
- Tuners capable of adaptively maximizing antenna current under variable plasma conditions

Distribution A: Approved for public release; distribution unlimited. OPS-17-15041

BBR—Broadband Receiver

- Comprised of three search coil magnetometers and two dipole antennae
- Measures 3-component magnetic field and 2component electric field
 - Frequency range: 100 Hz 50 kHz
 - Sensitivity 10⁻¹⁶ V²/m²/Hz (E) & 10⁻¹¹ nT²/Hz (B)
- Includes onboard Software Receiver (SRx), which produces waveform, spectrogram, and compressed products for telemetry conservation
- 30 Second survey product as well as burst mode products

LCI—Loss Cone Imager

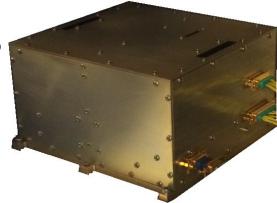
- Comprised of two dectors: High Sensitivity Telescope (HST) for measuring loss cone population and Fixed Sensor Head (FSH) for total population
- Measures energetic electron fluxes
 - HST: measures 100 500 keV e- with 0.1 cm²-str geometric factor within 6.5° of loss cone
 - FSH: 130° x 10° of pitch angle distribution for 50 700 keV electrons every 167 milliseconds

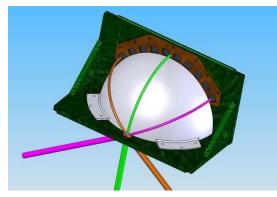
 $C \cdot S \cdot P$

21

VMAG—Vector Magnetometer

- Comprised of boom-mounted fluxgate sensor head, cable assembly, and electronics unit
- Measures ULF and DC Magnetic field
 - 0 8 Hz three-axis measurement at ±0.1 nT accuracy
 - ±1° field direction accuracy



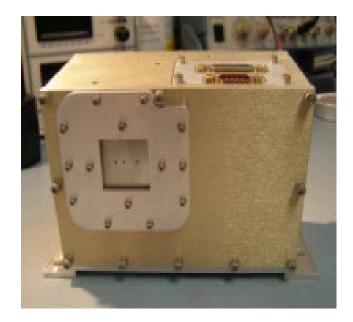


LEESA—Low Energy Electrostatic Analyzer

- Comprised of two pairs of concentric quarter spherical electrostatic analyzers, with voltage differences cycled to select particle energies
- Measures electron/ion fluxes for ~20 eV to 50 keV energies
 - 80 energies sampled per sweep from 256 choices of energy
 - Low energy limit in practice will be constrained mostly by spacecraft potential
- Full FOV 120° x 12° in 5 angular zones for each species (electron/ion)
 - FOV spans 105° on one side of B-field line, 15° on the other
- Two modes for cadence: 1 sec/sweep or 10 sec/sweep
- Survey mode is highly programmable
 - Survey energies/sampling are programmable on orbit
 - Typically will survey a subset of energies per sweep with periodic low energy sweeps for spacecraft potential check
 - But can do high resolution energy sampling in limited range
 - Or high resolution time sampling of a subset of energies

CEASE—Compact Environment Anomaly SEnsor

- Comprises one detector telescope (two elements), two dosimeters, and one SEE monitor
- Telescope measures protons in range 25-102 MeV and electrons in range 11-87 keV
 - 36 logic bins (LBs) reported
 - Includes the 9 nominal proton/electron channels
 - LBs cover protons 0.8-90 MeV, electrons 45 keV-10 MeV
- Dosimeters measure protons in range 21-49 MeV and electrons in range 1.2-6.5 MeV
 - 6 channels per dosimeter
- Full angle FOVs 90° for telescope, 180° for dosimeters
- 5 sec sample cadence
- CEASE units have previously flown on TSX-5, DSP-21, TacSat-4



LIPS—Low Energy Imaging Particle Spectrometer

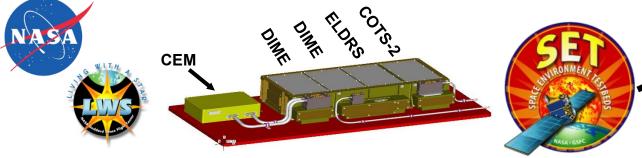
- Comprises scintillator detector pixels imaging fluxes through pinhole apertures
- Measures electrons and protons of energies 60 keV to >2 MeV
 - 6 energy channels
- Full FOV 79° x 8° in 8 angular bins
 - Edge of large FOV angle is aligned with Bfield
- 1 sec sample cadence

HIPS—High Energy Imaging Particle Spectrometer

- Comprised of three-detector telescope plus anti-coincidence scintillator
- Measures protons of energies 14-300 MeV and electrons of energies 1.1-12 MeV
 - 9 proton channels
 - 11 electron channels (likely only 5 unique)
- FOV 90° x 12.5° in 8 angular bins
 - Edge of large FOV angle is aligned with Bfield
 - Default is electron imaging turned off (no angular bin reporting) as electrons likely won't be resolvable into bins—will decide on orbit
- 1 sec sample cadence

HEPS—High Energy Particle Sensor

- Comprised of four Si detectors, two scintillator detectors, and anticoincidence scintillator
- Measures protons with energies 20-440 MeV plus >440 MeV channel
 - 22 differential + 1 integral channels
- Full angle FOV 15-25° for 100-200 MeV protons (half peak)
- 10 sec sample cadence



Space Effects

NASA Space Environment Testbed (SET)

- Correlative Environment Monitor (QinetiQ):European dosimeter & deepdielectric charging instrument
- DIME (Clemson Univ): SEE and total dose environments using miniaturized COTS parts
- ELDRS (Arizona State): Low dose-rate and proton impacts to performance of 24 transistors
- COTS-2 (CNES and NASA): Virtex2 SRAM single event upset sensitivity

AFRL "COTS" Sensors

- Objective: directly measure changes due to MEO radiation environment
 - Thermal absorption and emission—heat gain/loss of thermal control paints
 - Optical transmission—erosion of quartz windows, re-deposition of material on adjacent optics
- Results applicable to thin-film photovoltaics

SET on DSX

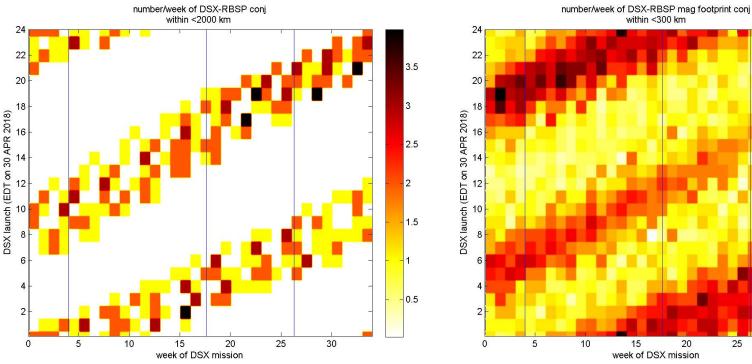
SET advances our understanding of onorbit degradation

Radiometer

Photometer

Provider: AFRL/RQ

DSX-Van Allen Conjunctions


20

15

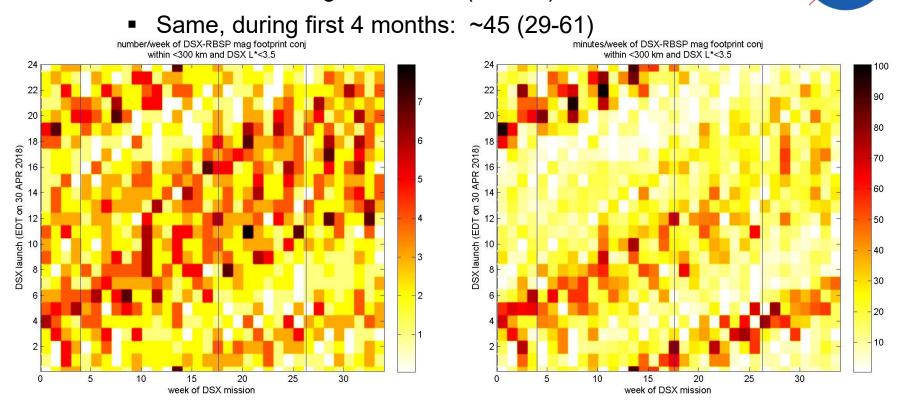
10

5

- Geographic conjunctions: ~15 within 2000 km through Dec 2018 (11-20)
- Magnetic conjunctions: ~307 for A+B with footprints within 300 km, through Dec 2018 (201-381)
 - Same, during first 4 months: ~168 (82-279)

(orientation of DSX orbit will not be known until launch)

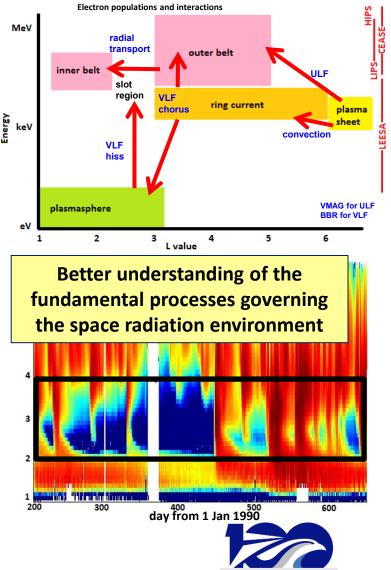
30


20

25

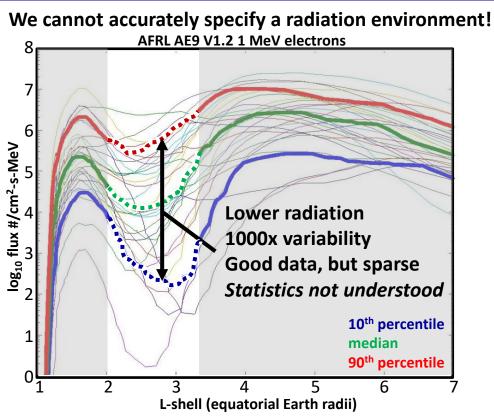
DSX-Van Allen Tx Conjunctions

 Magnetic conjunctions at locations appropriate for high power transmissions (L*<3.5): ~82 for A+B with footprints within 300 km, through Dec 2018 (56-100)


(orientation of DSX orbit will not be known until launch)

Radiation Belt Dynamics

- Goal: Improve understanding of processes driving dynamics of the MEO environment
 - Natural wave particle interactions drive much of these dynamics, but we need more complete understanding
- DSX will contribute with:
 - Robust data on both the wave environment and the particle populations that drive and/or respond to it
 - Waves from ULF to VLF
 - Particles from plasmasphere to ring current to radiation belt populations
 - Participation in conjunction studies—both with other satellites and ground stations
- DSX mission is unique from others:
 - Orbit targets MEO and slot/plasmasphere-related processes
 - Higher inclination permits observations of offequatorial waves



Radiation Belt Mapping

- Goal: Characterize the *highly variable* MEO radiation environment
- "Slot region?"
 - AFRL CEASE on TacSat-4 (2012) observed elevated 5 MeV protons near L=2.5
 - NASA/AFRL CRRES (1990) observed transient filling of the slot region with electrons
- Targeted observations of the MEO environment in a variety of states is useful for:
 - Improve design climatology (AE9/AP9 ready to accept data)
 - Studies of "change of state" events in MEO

